|
a |
|
b/uNet_Subclassed_Large.py |
|
|
1 |
# %% importing packages |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import tensorflow as tf |
|
|
5 |
from tensorflow import keras |
|
|
6 |
from tensorflow.keras import layers |
|
|
7 |
from tensorflow.keras import mixed_precision |
|
|
8 |
from tensorflow.python.ops.numpy_ops import np_config |
|
|
9 |
np_config.enable_numpy_behavior() |
|
|
10 |
from skimage import measure |
|
|
11 |
import cv2 as cv |
|
|
12 |
import os |
|
|
13 |
import matplotlib.pyplot as plt |
|
|
14 |
plt.rcParams['figure.figsize'] = [10, 15] |
|
|
15 |
|
|
|
16 |
|
|
|
17 |
# %% Citations |
|
|
18 |
############################################################# |
|
|
19 |
############################################################# |
|
|
20 |
# https://www.tensorflow.org/guide/keras/functional |
|
|
21 |
# https://www.tensorflow.org/tutorials/customization/custom_layers |
|
|
22 |
# https://keras.io/examples/keras_recipes/tfrecord/ |
|
|
23 |
# https://arxiv.org/abs/1505.04597 |
|
|
24 |
# https://www.tensorflow.org/guide/gpu |
|
|
25 |
|
|
|
26 |
# Defining Functions |
|
|
27 |
############################################################# |
|
|
28 |
############################################################# |
|
|
29 |
|
|
|
30 |
def parse_tf_elements(element): |
|
|
31 |
'''This function is the mapper function for retrieving examples from the |
|
|
32 |
tfrecord''' |
|
|
33 |
|
|
|
34 |
# create placeholders for all the features in each example |
|
|
35 |
data = { |
|
|
36 |
'height' : tf.io.FixedLenFeature([],tf.int64), |
|
|
37 |
'width' : tf.io.FixedLenFeature([],tf.int64), |
|
|
38 |
'raw_image' : tf.io.FixedLenFeature([],tf.string), |
|
|
39 |
'raw_seg' : tf.io.FixedLenFeature([],tf.string), |
|
|
40 |
'bbox_x' : tf.io.VarLenFeature(tf.float32), |
|
|
41 |
'bbox_y' : tf.io.VarLenFeature(tf.float32), |
|
|
42 |
'bbox_height' : tf.io.VarLenFeature(tf.float32), |
|
|
43 |
'bbox_width' : tf.io.VarLenFeature(tf.float32) |
|
|
44 |
} |
|
|
45 |
|
|
|
46 |
# pull out the current example |
|
|
47 |
content = tf.io.parse_single_example(element, data) |
|
|
48 |
|
|
|
49 |
# pull out each feature from the example |
|
|
50 |
height = content['height'] |
|
|
51 |
width = content['width'] |
|
|
52 |
raw_seg = content['raw_seg'] |
|
|
53 |
raw_image = content['raw_image'] |
|
|
54 |
bbox_x = content['bbox_x'] |
|
|
55 |
bbox_y = content['bbox_y'] |
|
|
56 |
bbox_height = content['bbox_height'] |
|
|
57 |
bbox_width = content['bbox_width'] |
|
|
58 |
|
|
|
59 |
# convert the images to uint8, and reshape them accordingly |
|
|
60 |
image = tf.io.parse_tensor(raw_image, out_type=tf.uint8) |
|
|
61 |
image = tf.reshape(image,shape=[height,width,3]) |
|
|
62 |
segmentation = tf.io.parse_tensor(raw_seg, out_type=tf.uint8) |
|
|
63 |
segmentation = tf.reshape(segmentation,shape=[height,width,1]) |
|
|
64 |
one_hot_seg = tf.one_hot(tf.squeeze(segmentation),7,axis=-1) |
|
|
65 |
|
|
|
66 |
# there currently is a bug with returning the bbox, but isn't necessary |
|
|
67 |
# to fix for creating the initial uNet for segmentation exploration |
|
|
68 |
|
|
|
69 |
# bbox = [bbox_x,bbox_y,bbox_height,bbox_width] |
|
|
70 |
|
|
|
71 |
return(image,one_hot_seg) |
|
|
72 |
|
|
|
73 |
############################################################# |
|
|
74 |
|
|
|
75 |
class EncoderBlock(layers.Layer): |
|
|
76 |
'''This function returns an encoder block with two convolutional layers and |
|
|
77 |
an option for returning both a max-pooled output with a stride and pool |
|
|
78 |
size of (2,2) and the output of the second convolution for skip |
|
|
79 |
connections implemented later in the network during the decoding |
|
|
80 |
section. All padding is set to "same" for cleanliness. |
|
|
81 |
|
|
|
82 |
When initializing it receives the number of filters to be used in both |
|
|
83 |
of the convolutional layers as well as the kernel size and stride for |
|
|
84 |
those same layers. It also receives the trainable variable for use with |
|
|
85 |
the batch normalization layers.''' |
|
|
86 |
|
|
|
87 |
def __init__(self, |
|
|
88 |
filters, |
|
|
89 |
kernel_size=(3,3), |
|
|
90 |
strides=(1,1), |
|
|
91 |
trainable=True, |
|
|
92 |
name='encoder_block', |
|
|
93 |
**kwargs): |
|
|
94 |
|
|
|
95 |
super(EncoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
96 |
# When initializing this object receives a trainable parameter for |
|
|
97 |
# freezing the convolutional layers. |
|
|
98 |
|
|
|
99 |
# including the image normalization within the network for easier image |
|
|
100 |
# processing during inference |
|
|
101 |
self.image_normalization = layers.Normalization() |
|
|
102 |
|
|
|
103 |
# below creates the first of two convolutional layers |
|
|
104 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
105 |
kernel_size=kernel_size, |
|
|
106 |
strides=strides, |
|
|
107 |
padding='same', |
|
|
108 |
name='encoder_conv1', |
|
|
109 |
trainable=trainable) |
|
|
110 |
|
|
|
111 |
# second of two convolutional layers |
|
|
112 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
113 |
kernel_size=kernel_size, |
|
|
114 |
strides=strides, |
|
|
115 |
padding='same', |
|
|
116 |
name='encoder_conv2', |
|
|
117 |
trainable=trainable) |
|
|
118 |
|
|
|
119 |
# creates the max-pooling layer for downsampling the image. |
|
|
120 |
self.enc_pool = layers.MaxPool2D(pool_size=(2,2), |
|
|
121 |
strides=(2,2), |
|
|
122 |
padding='same', |
|
|
123 |
name='enc_pool') |
|
|
124 |
|
|
|
125 |
# ReLU layer for activations. |
|
|
126 |
self.ReLU = layers.ReLU() |
|
|
127 |
|
|
|
128 |
# both batch normalization layers for use with their corresponding |
|
|
129 |
# convolutional layers. |
|
|
130 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
131 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
132 |
|
|
|
133 |
def call(self,input,training=True,include_pool=True): |
|
|
134 |
|
|
|
135 |
# first conv of the encoder block |
|
|
136 |
x = self.image_normalization(input) |
|
|
137 |
x = self.conv1(x) |
|
|
138 |
x = self.batch_norm1(x,training=training) |
|
|
139 |
x = self.ReLU(x) |
|
|
140 |
|
|
|
141 |
# second conv of the encoder block |
|
|
142 |
x = self.conv2(x) |
|
|
143 |
x = self.batch_norm2(x,training=training) |
|
|
144 |
x = self.ReLU(x) |
|
|
145 |
|
|
|
146 |
# calculate and include the max pooling layer if include_pool is true. |
|
|
147 |
# This output is used for the skip connections later in the network. |
|
|
148 |
if include_pool: |
|
|
149 |
pooled_x = self.enc_pool(x) |
|
|
150 |
return(x,pooled_x) |
|
|
151 |
|
|
|
152 |
else: |
|
|
153 |
return(x) |
|
|
154 |
|
|
|
155 |
|
|
|
156 |
############################################################# |
|
|
157 |
|
|
|
158 |
class DecoderBlock(layers.Layer): |
|
|
159 |
'''This function returns a decoder block that when called receives both an |
|
|
160 |
input and a "skip connection". The input is passed to the |
|
|
161 |
"up convolution" or transpose conv layer to double the dimensions before |
|
|
162 |
being concatenated with its associated skip connection from the encoder |
|
|
163 |
section of the network. All padding is set to "same" for cleanliness. |
|
|
164 |
The decoder block also has an option for including an additional |
|
|
165 |
"segmentation" layer, which is a (1,1) convolution with 4 filters, which |
|
|
166 |
produces the logits for the one-hot encoded ground truth. |
|
|
167 |
|
|
|
168 |
When initializing it receives the number of filters to be used in the |
|
|
169 |
up convolutional layer as well as the other two forward convolutions. |
|
|
170 |
The received kernel_size and stride is used for the forward convolutions, |
|
|
171 |
with the up convolution kernel and stride set to be (2,2).''' |
|
|
172 |
def __init__(self, |
|
|
173 |
filters, |
|
|
174 |
trainable=True, |
|
|
175 |
kernel_size=(3,3), |
|
|
176 |
strides=(1,1), |
|
|
177 |
name='DecoderBlock', |
|
|
178 |
**kwargs): |
|
|
179 |
|
|
|
180 |
super(DecoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
181 |
|
|
|
182 |
# creating the up convolution layer |
|
|
183 |
self.up_conv = layers.Conv2DTranspose(filters=filters, |
|
|
184 |
kernel_size=(2,2), |
|
|
185 |
strides=(2,2), |
|
|
186 |
padding='same', |
|
|
187 |
name='decoder_upconv', |
|
|
188 |
trainable=trainable) |
|
|
189 |
|
|
|
190 |
# the first of two forward convolutional layers |
|
|
191 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
192 |
kernel_size=kernel_size, |
|
|
193 |
strides=strides, |
|
|
194 |
padding='same', |
|
|
195 |
name ='decoder_conv1', |
|
|
196 |
trainable=trainable) |
|
|
197 |
|
|
|
198 |
# second convolutional layer |
|
|
199 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
200 |
kernel_size=kernel_size, |
|
|
201 |
strides=strides, |
|
|
202 |
padding='same', |
|
|
203 |
name ='decoder_conv2', |
|
|
204 |
trainable=trainable) |
|
|
205 |
|
|
|
206 |
# this creates the output prediction logits layer. |
|
|
207 |
self.seg_out = layers.Conv2D(filters=7, |
|
|
208 |
kernel_size=(1,1), |
|
|
209 |
name='conv_feature_map') |
|
|
210 |
|
|
|
211 |
# ReLU for activation of all above layers |
|
|
212 |
self.ReLU = layers.ReLU() |
|
|
213 |
|
|
|
214 |
# the individual batch normalization layers for their respective |
|
|
215 |
# convolutional layers. |
|
|
216 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
217 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
218 |
|
|
|
219 |
|
|
|
220 |
def call(self,input,skip_conn,training=True,segmentation=False): |
|
|
221 |
|
|
|
222 |
up = self.up_conv(input) # perform image up convolution |
|
|
223 |
# concatenate the input and the skip_conn along the features axis |
|
|
224 |
concatenated = layers.concatenate([up,skip_conn],axis=-1) |
|
|
225 |
|
|
|
226 |
# first convolution |
|
|
227 |
x = self.conv1(concatenated) |
|
|
228 |
x = self.batch_norm1(x,training=training) |
|
|
229 |
x = self.ReLU(x) |
|
|
230 |
|
|
|
231 |
# second convolution |
|
|
232 |
x = self.conv2(x) |
|
|
233 |
x = self.batch_norm2(x,training=training) |
|
|
234 |
x = self.ReLU(x) |
|
|
235 |
|
|
|
236 |
# if segmentation is True, then run the segmentation (1,1) convolution |
|
|
237 |
# and use the Softmax to produce a probability distribution. |
|
|
238 |
if segmentation: |
|
|
239 |
seg = self.seg_out(x) |
|
|
240 |
# deliberately set as "float32" to ensure proper calculation if |
|
|
241 |
# switching to mixed precision for efficiency |
|
|
242 |
prob = layers.Softmax(dtype='float32')(seg) |
|
|
243 |
return(prob) |
|
|
244 |
|
|
|
245 |
else: |
|
|
246 |
return(x) |
|
|
247 |
|
|
|
248 |
############################################################# |
|
|
249 |
|
|
|
250 |
class uNet(keras.Model): |
|
|
251 |
'''This is a sub-classed model that uses the encoder and decoder blocks |
|
|
252 |
defined above to create a custom unet. The differences from the original |
|
|
253 |
paper include a variable filter scalar (filter_multiplier), batch |
|
|
254 |
normalization between each convolutional layer and the associated ReLU |
|
|
255 |
activation, as well as feature normalization implemented in the first |
|
|
256 |
layer of the network.''' |
|
|
257 |
def __init__(self,filter_multiplier=2,**kwargs): |
|
|
258 |
super(uNet,self).__init__() |
|
|
259 |
|
|
|
260 |
# Defining encoder blocks |
|
|
261 |
self.encoder_block1 = EncoderBlock(filters=2*filter_multiplier, |
|
|
262 |
name='Enc1') |
|
|
263 |
self.encoder_block2 = EncoderBlock(filters=4*filter_multiplier, |
|
|
264 |
name='Enc2') |
|
|
265 |
self.encoder_block3 = EncoderBlock(filters=8*filter_multiplier, |
|
|
266 |
name='Enc3') |
|
|
267 |
self.encoder_block4 = EncoderBlock(filters=16*filter_multiplier, |
|
|
268 |
name='Enc4') |
|
|
269 |
self.encoder_block5 = EncoderBlock(filters=32*filter_multiplier, |
|
|
270 |
name='Enc5') |
|
|
271 |
self.encoder_block6 = EncoderBlock(filters=64*filter_multiplier, |
|
|
272 |
name='Enc6') |
|
|
273 |
|
|
|
274 |
# Defining decoder blocks. The names are in reverse order to make it |
|
|
275 |
# (hopefully) easier to understand which skip connections are associated |
|
|
276 |
# with which decoder layers. |
|
|
277 |
self.decoder_block5 = DecoderBlock(filters=32*filter_multiplier, |
|
|
278 |
name='Dec5') |
|
|
279 |
self.decoder_block4 = DecoderBlock(filters=16*filter_multiplier, |
|
|
280 |
name='Dec4') |
|
|
281 |
self.decoder_block3 = DecoderBlock(filters=8*filter_multiplier, |
|
|
282 |
name='Dec3') |
|
|
283 |
self.decoder_block2 = DecoderBlock(filters=4*filter_multiplier, |
|
|
284 |
name='Dec2') |
|
|
285 |
self.decoder_block1 = DecoderBlock(filters=2*filter_multiplier, |
|
|
286 |
name='Dec1') |
|
|
287 |
|
|
|
288 |
|
|
|
289 |
def call(self,inputs,training): |
|
|
290 |
|
|
|
291 |
# encoder |
|
|
292 |
enc1,enc1_pool = self.encoder_block1(input=inputs,training=training) |
|
|
293 |
enc2,enc2_pool = self.encoder_block2(input=enc1_pool,training=training) |
|
|
294 |
enc3,enc3_pool = self.encoder_block3(input=enc2_pool,training=training) |
|
|
295 |
enc4,enc4_pool = self.encoder_block4(input=enc3_pool,training=training) |
|
|
296 |
enc5,enc5_pool = self.encoder_block5(input=enc4_pool,training=training) |
|
|
297 |
enc6 = self.encoder_block6(input=enc5_pool, |
|
|
298 |
include_pool=False, |
|
|
299 |
training=training) |
|
|
300 |
|
|
|
301 |
# decoder |
|
|
302 |
dec5 = self.decoder_block5(input=enc6,skip_conn=enc5,training=training) |
|
|
303 |
dec4 = self.decoder_block4(input=dec5,skip_conn=enc4,training=training) |
|
|
304 |
dec3 = self.decoder_block3(input=dec4,skip_conn=enc3,training=training) |
|
|
305 |
dec2 = self.decoder_block2(input=dec3,skip_conn=enc2,training=training) |
|
|
306 |
seg_logits_out = self.decoder_block1(input=dec2, |
|
|
307 |
skip_conn=enc1, |
|
|
308 |
segmentation=True, |
|
|
309 |
training=training) |
|
|
310 |
|
|
|
311 |
return(seg_logits_out) |
|
|
312 |
|
|
|
313 |
############################################################# |
|
|
314 |
|
|
|
315 |
def load_dataset(file_names): |
|
|
316 |
'''Receives a list of file names from a folder that contains tfrecord files |
|
|
317 |
compiled previously. Takes these names and creates a tensorflow dataset |
|
|
318 |
from them.''' |
|
|
319 |
|
|
|
320 |
ignore_order = tf.data.Options() |
|
|
321 |
ignore_order.experimental_deterministic = False |
|
|
322 |
dataset = tf.data.TFRecordDataset(file_names) |
|
|
323 |
|
|
|
324 |
# you can shard the dataset if you like to reduce the size when necessary |
|
|
325 |
dataset = dataset.shard(num_shards=3,index=1) |
|
|
326 |
|
|
|
327 |
# order in the file names doesn't really matter, so ignoring it |
|
|
328 |
dataset = dataset.with_options(ignore_order) |
|
|
329 |
|
|
|
330 |
# mapping the dataset using the parse_tf_elements function defined earlier |
|
|
331 |
dataset = dataset.map(parse_tf_elements,num_parallel_calls=1) |
|
|
332 |
|
|
|
333 |
return(dataset) |
|
|
334 |
|
|
|
335 |
############################################################# |
|
|
336 |
|
|
|
337 |
def get_dataset(file_names,batch_size): |
|
|
338 |
'''Receives a list of file names of tfrecord shards from a dataset as well |
|
|
339 |
as a batch size for the dataset.''' |
|
|
340 |
|
|
|
341 |
# uses the load_dataset function to retrieve the files and put them into a |
|
|
342 |
# dataset. |
|
|
343 |
dataset = load_dataset(file_names) |
|
|
344 |
|
|
|
345 |
# creates a shuffle buffer of 1000. Number was arbitrarily chosen, feel free |
|
|
346 |
# to alter as fits your hardware. |
|
|
347 |
dataset = dataset.shuffle(1000) |
|
|
348 |
|
|
|
349 |
# adding the batch size to the dataset |
|
|
350 |
dataset = dataset.batch(batch_size=batch_size) |
|
|
351 |
|
|
|
352 |
return(dataset) |
|
|
353 |
|
|
|
354 |
############################################################# |
|
|
355 |
|
|
|
356 |
def weighted_cce_loss(y_true,y_pred): |
|
|
357 |
'''Yes, this function essentially does what the "fit" argument |
|
|
358 |
"class_weight" does when training a network. I had to create this |
|
|
359 |
separate custom loss function because aparently when using tfrecord files |
|
|
360 |
for reading your dataset a check is performed comparing the input, ground |
|
|
361 |
truth, and weights values to each other. However, a comparison between |
|
|
362 |
the empty None that is passed during the build call of the model and the |
|
|
363 |
weight array/dictionary returns an error. Thus, here is a custom loss |
|
|
364 |
function that applies a weighting to the different classes based on the |
|
|
365 |
distribution of the classes within the entire dataset. For thoroughness' |
|
|
366 |
sake future iteration of the dataset will only base the weights on the |
|
|
367 |
dataset used for training, not the whole dataset.''' |
|
|
368 |
|
|
|
369 |
# weights for each class, as background, connective, muscle, and vasculature |
|
|
370 |
weights = [0,10.52735078, 2.3808943, 2.44062288, 250.61600774, 8, 20] |
|
|
371 |
# create a weight for each of the images in the current batch (because the |
|
|
372 |
# weighting for categorical crossentropy needs one per input) |
|
|
373 |
for idx,weight in enumerate(weights): |
|
|
374 |
# making the input a numpy array and not an eager tensor to allow for |
|
|
375 |
# binary index masking. |
|
|
376 |
current_weights = np.asarray(tf.argmax(y_true,axis=-1)).copy().astype( |
|
|
377 |
np.float64) |
|
|
378 |
# create a mask for the current class that then becomes the value of the |
|
|
379 |
# weight. This is then passed to the loss function to apply to each |
|
|
380 |
# pixel. |
|
|
381 |
mask = current_weights==idx |
|
|
382 |
current_weights[mask] = weight |
|
|
383 |
|
|
|
384 |
cce = tf.keras.losses.CategoricalCrossentropy() |
|
|
385 |
cce_loss = cce(y_true,y_pred,current_weights) |
|
|
386 |
|
|
|
387 |
return(cce_loss) |
|
|
388 |
|
|
|
389 |
############################################################# |
|
|
390 |
############################################################# |
|
|
391 |
# %% Setting up the GPU, and setting memory growth to true so that it is easier |
|
|
392 |
# to see how much memory the training process is taking up exactly. This code is |
|
|
393 |
# from a tensorflow tutorial. |
|
|
394 |
|
|
|
395 |
gpus = tf.config.list_physical_devices('GPU') |
|
|
396 |
if gpus: |
|
|
397 |
try: |
|
|
398 |
for gpu in gpus: |
|
|
399 |
tf.config.experimental.set_memory_growth(gpu, True) |
|
|
400 |
logical_gpus = tf.config.list_logical_devices('GPU') |
|
|
401 |
|
|
|
402 |
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") |
|
|
403 |
except RuntimeError as e: |
|
|
404 |
print(e) |
|
|
405 |
|
|
|
406 |
# use this to set mixed precision for higher efficiency later if you would like |
|
|
407 |
# mixed_precision.set_global_policy('mixed_float16') |
|
|
408 |
|
|
|
409 |
# %% setting up datasets and building model |
|
|
410 |
|
|
|
411 |
# directory where the dataset shards are stored |
|
|
412 |
shard_dataset_directory = '/home/briancottle/Research/Semantic_Segmentation/dataset_shards' |
|
|
413 |
|
|
|
414 |
os.chdir(shard_dataset_directory) |
|
|
415 |
|
|
|
416 |
# only get the file names that follow the shard naming convention |
|
|
417 |
file_names = tf.io.gfile.glob(shard_dataset_directory + \ |
|
|
418 |
"/shard_*_of_*.tfrecords") |
|
|
419 |
|
|
|
420 |
# first 70% of names go to the training dataset. Following 20% go to the val |
|
|
421 |
# dataset, followed by last 10% go to the testing dataset. |
|
|
422 |
val_split_idx = int(0.7*len(file_names)) |
|
|
423 |
test_split_idx = int(0.9*len(file_names)) |
|
|
424 |
|
|
|
425 |
# separate the file names out |
|
|
426 |
train_files, val_files, test_files = file_names[:val_split_idx],\ |
|
|
427 |
file_names[val_split_idx:test_split_idx],\ |
|
|
428 |
file_names[test_split_idx:] |
|
|
429 |
|
|
|
430 |
# create the datasets. Because of how batches are run for training, we set |
|
|
431 |
# the dataset to repeat() because the batches and epochs are altered from |
|
|
432 |
# standard practice to fit on graphics cards and provide more meaningful and |
|
|
433 |
# frequent updates to the console. |
|
|
434 |
training_dataset = get_dataset(train_files,batch_size=3) |
|
|
435 |
training_dataset = training_dataset.repeat() |
|
|
436 |
validation_dataset = get_dataset(val_files,batch_size = 2) |
|
|
437 |
# testing has a batch size of 1 to facilitate visualization of predictions |
|
|
438 |
testing_dataset = get_dataset(test_files,batch_size=1) |
|
|
439 |
|
|
|
440 |
# explicitly puts the model on the GPU to show how large it is. |
|
|
441 |
gpus = tf.config.list_logical_devices('GPU') |
|
|
442 |
with tf.device(gpus[0].name): |
|
|
443 |
# filter multiplier provided creates largest filter depth of 256 with a |
|
|
444 |
# multiplier of 8. |
|
|
445 |
sample_data = np.zeros((1,1024,1024,3)).astype(np.int8) |
|
|
446 |
unet = uNet(filter_multiplier=32) |
|
|
447 |
# build with input image size of 512*512 |
|
|
448 |
out = unet(sample_data) |
|
|
449 |
unet.summary() |
|
|
450 |
# %% |
|
|
451 |
# running network eagerly because it allows us to use convert a tensor to a |
|
|
452 |
# numpy array to help with the weighted loss calculation. |
|
|
453 |
unet.compile( |
|
|
454 |
optimizer=tf.keras.optimizers.Adam(learning_rate=0.00008), |
|
|
455 |
loss=weighted_cce_loss, |
|
|
456 |
run_eagerly=True, |
|
|
457 |
metrics=[tf.keras.metrics.Precision(name='precision'), |
|
|
458 |
tf.keras.metrics.Recall(name='recall')] |
|
|
459 |
) |
|
|
460 |
|
|
|
461 |
# %% |
|
|
462 |
|
|
|
463 |
# creating callbacks |
|
|
464 |
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_recall', |
|
|
465 |
mode='max', |
|
|
466 |
factor=0.8, |
|
|
467 |
patience=3, |
|
|
468 |
min_lr=0.000001, |
|
|
469 |
verbose=True) |
|
|
470 |
|
|
|
471 |
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint('unet_seg_subclassed.h5', |
|
|
472 |
save_best_only=True, |
|
|
473 |
save_weights_only=True, |
|
|
474 |
monitor='val_precision', |
|
|
475 |
mode='max', |
|
|
476 |
verbose=True) |
|
|
477 |
|
|
|
478 |
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=8, |
|
|
479 |
monitor='val_recall', |
|
|
480 |
mode='max', |
|
|
481 |
restore_best_weights=True, |
|
|
482 |
verbose=True) |
|
|
483 |
|
|
|
484 |
# setting the number of batches to iterate through each epoch to a value much |
|
|
485 |
# lower than what it normaly would be so that we can actually see what is going |
|
|
486 |
# on with the network, as well as have a meaningful early stopping. |
|
|
487 |
num_steps = 250 |
|
|
488 |
|
|
|
489 |
# fit the network! |
|
|
490 |
history = unet.fit(training_dataset, |
|
|
491 |
epochs=70, |
|
|
492 |
steps_per_epoch=num_steps, |
|
|
493 |
validation_data=validation_dataset, |
|
|
494 |
callbacks=[checkpoint_cb, |
|
|
495 |
early_stopping_cb, |
|
|
496 |
reduce_lr]) |
|
|
497 |
# %% |
|
|
498 |
|
|
|
499 |
|
|
|
500 |
|
|
|
501 |
# %% |
|
|
502 |
# evaluate the network after loading the weights |
|
|
503 |
unet.load_weights('./unet_seg_subclassed.h5') |
|
|
504 |
results = unet.evaluate(testing_dataset) |
|
|
505 |
|
|
|
506 |
# %% |
|
|
507 |
# extracting loss vs epoch |
|
|
508 |
loss = history.history['loss'] |
|
|
509 |
val_loss = history.history['val_loss'] |
|
|
510 |
# extracting precision vs epoch |
|
|
511 |
precision = history.history['precision'] |
|
|
512 |
val_precision = history.history['val_precision'] |
|
|
513 |
# extracting recall vs epoch |
|
|
514 |
recall = history.history['recall'] |
|
|
515 |
val_recall = history.history['val_recall'] |
|
|
516 |
|
|
|
517 |
epochs = range(len(loss)) |
|
|
518 |
|
|
|
519 |
figs, axes = plt.subplots(3,1) |
|
|
520 |
|
|
|
521 |
# plotting loss and validation loss |
|
|
522 |
axes[0].plot(epochs,loss) |
|
|
523 |
axes[0].plot(epochs,val_loss) |
|
|
524 |
axes[0].legend(['loss','val_loss']) |
|
|
525 |
axes[0].set(xlabel='epochs',ylabel='crossentropy loss') |
|
|
526 |
|
|
|
527 |
# plotting precision and validation precision |
|
|
528 |
axes[1].plot(epochs,precision) |
|
|
529 |
axes[1].plot(epochs,val_precision) |
|
|
530 |
axes[1].legend(['precision','val_precision']) |
|
|
531 |
axes[1].set(xlabel='epochs',ylabel='precision') |
|
|
532 |
|
|
|
533 |
# plotting recall validation recall |
|
|
534 |
axes[2].plot(epochs,recall) |
|
|
535 |
axes[2].plot(epochs,val_recall) |
|
|
536 |
axes[2].legend(['recall','val_recall']) |
|
|
537 |
axes[2].set(xlabel='epochs',ylabel='recall') |
|
|
538 |
|
|
|
539 |
|
|
|
540 |
|
|
|
541 |
# %% exploring the predictions to better understand what the network is doing |
|
|
542 |
|
|
|
543 |
images = [] |
|
|
544 |
gt = [] |
|
|
545 |
predictions = [] |
|
|
546 |
|
|
|
547 |
# taking out 10 of the next samples from the testing dataset and iterating |
|
|
548 |
# through them |
|
|
549 |
for sample in testing_dataset.take(10): |
|
|
550 |
# make sure it is producing the correct dimensions |
|
|
551 |
print(sample[0].shape) |
|
|
552 |
# take the image and convert it back to RGB, store in list |
|
|
553 |
image = sample[0] |
|
|
554 |
image = cv.cvtColor(np.squeeze(np.asarray(image).copy()),cv.COLOR_BGR2RGB) |
|
|
555 |
images.append(image) |
|
|
556 |
# extract the ground truth and store in list |
|
|
557 |
ground_truth = sample[1] |
|
|
558 |
gt.append(ground_truth) |
|
|
559 |
# perform inference |
|
|
560 |
out = unet.predict(sample[0]) |
|
|
561 |
predictions.append(out) |
|
|
562 |
# show the original input image |
|
|
563 |
plt.imshow(image) |
|
|
564 |
plt.show() |
|
|
565 |
# flatten the ground truth from one-hot encoded along the last axis, and |
|
|
566 |
# show the resulting image |
|
|
567 |
squeezed_gt = tf.argmax(ground_truth,axis=-1) |
|
|
568 |
squeezed_prediction = tf.argmax(out,axis=-1) |
|
|
569 |
plt.imshow(squeezed_gt[0,:,:],vmin=0, vmax=6) |
|
|
570 |
# print the number of classes in this tile |
|
|
571 |
print(np.unique(squeezed_gt)) |
|
|
572 |
plt.show() |
|
|
573 |
# show the flattened predictions |
|
|
574 |
plt.imshow(squeezed_prediction[0,:,:],vmin=0, vmax=6) |
|
|
575 |
print(np.unique(squeezed_prediction)) |
|
|
576 |
plt.show() |
|
|
577 |
|
|
|
578 |
# %% |
|
|
579 |
# select one of the images cycled through above to investigate further |
|
|
580 |
image_to_investigate = 6 |
|
|
581 |
|
|
|
582 |
# show the original image |
|
|
583 |
plt.imshow(images[image_to_investigate]) |
|
|
584 |
plt.show() |
|
|
585 |
|
|
|
586 |
# show the ground truth for this tile |
|
|
587 |
squeezed_gt = tf.argmax(gt[image_to_investigate],axis=-1) |
|
|
588 |
plt.imshow(squeezed_gt[0,:,:]) |
|
|
589 |
# print the number of unique classes in the ground truth |
|
|
590 |
print(np.unique(squeezed_gt)) |
|
|
591 |
plt.show() |
|
|
592 |
# flatten the prediction and show the probability distribution |
|
|
593 |
squeezed_prediction = tf.argmax(predictions[image_to_investigate],axis=-1) |
|
|
594 |
plt.imshow(predictions[image_to_investigate][0,:,:,3]) |
|
|
595 |
plt.show() |
|
|
596 |
# show the flattened image |
|
|
597 |
plt.imshow(squeezed_prediction[0,:,:]) |
|
|
598 |
print(np.unique(squeezed_prediction)) |
|
|
599 |
plt.show() |
|
|
600 |
|
|
|
601 |
# %% |