|
a |
|
b/uNet_Functional.py |
|
|
1 |
# %% importing packages |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import tensorflow as tf |
|
|
5 |
from tensorflow import keras |
|
|
6 |
from tensorflow.keras import layers |
|
|
7 |
from tensorflow.keras import mixed_precision |
|
|
8 |
from tensorflow.python.ops.numpy_ops import np_config |
|
|
9 |
np_config.enable_numpy_behavior() |
|
|
10 |
from skimage import measure |
|
|
11 |
import cv2 as cv |
|
|
12 |
import os |
|
|
13 |
import tqdm |
|
|
14 |
import matplotlib.pyplot as plt |
|
|
15 |
import gc |
|
|
16 |
|
|
|
17 |
|
|
|
18 |
# %% Citations |
|
|
19 |
############################################################# |
|
|
20 |
############################################################# |
|
|
21 |
# https://www.tensorflow.org/guide/keras/functional |
|
|
22 |
# https://www.tensorflow.org/tutorials/customization/custom_layers |
|
|
23 |
# https://keras.io/examples/keras_recipes/tfrecord/ |
|
|
24 |
# https://arxiv.org/abs/1505.04597 |
|
|
25 |
# https://www.tensorflow.org/guide/gpu |
|
|
26 |
|
|
|
27 |
# Defining Functions |
|
|
28 |
############################################################# |
|
|
29 |
############################################################# |
|
|
30 |
|
|
|
31 |
def parse_tf_elements(element): |
|
|
32 |
'''This function is the mapper function for retrieving examples from the |
|
|
33 |
tfrecord''' |
|
|
34 |
|
|
|
35 |
# create placeholders for all the features in each example |
|
|
36 |
data = { |
|
|
37 |
'height' : tf.io.FixedLenFeature([],tf.int64), |
|
|
38 |
'width' : tf.io.FixedLenFeature([],tf.int64), |
|
|
39 |
'raw_image' : tf.io.FixedLenFeature([],tf.string), |
|
|
40 |
'raw_seg' : tf.io.FixedLenFeature([],tf.string), |
|
|
41 |
'bbox_x' : tf.io.VarLenFeature(tf.float32), |
|
|
42 |
'bbox_y' : tf.io.VarLenFeature(tf.float32), |
|
|
43 |
'bbox_height' : tf.io.VarLenFeature(tf.float32), |
|
|
44 |
'bbox_width' : tf.io.VarLenFeature(tf.float32) |
|
|
45 |
} |
|
|
46 |
|
|
|
47 |
# pull out the current example |
|
|
48 |
content = tf.io.parse_single_example(element, data) |
|
|
49 |
|
|
|
50 |
# pull out each feature from the example |
|
|
51 |
height = content['height'] |
|
|
52 |
width = content['width'] |
|
|
53 |
raw_seg = content['raw_seg'] |
|
|
54 |
raw_image = content['raw_image'] |
|
|
55 |
bbox_x = content['bbox_x'] |
|
|
56 |
bbox_y = content['bbox_y'] |
|
|
57 |
bbox_height = content['bbox_height'] |
|
|
58 |
bbox_width = content['bbox_width'] |
|
|
59 |
|
|
|
60 |
# convert the images to uint8, and reshape them accordingly |
|
|
61 |
image = tf.io.parse_tensor(raw_image, out_type=tf.uint8) |
|
|
62 |
image = tf.reshape(image,shape=[height,width,3]) |
|
|
63 |
segmentation = tf.io.parse_tensor(raw_seg, out_type=tf.uint8) |
|
|
64 |
segmentation = tf.reshape(segmentation,shape=[height,width,1]) |
|
|
65 |
one_hot_seg = tf.one_hot(tf.squeeze(segmentation-1),4,axis=-1) |
|
|
66 |
|
|
|
67 |
# there currently is a bug with returning the bbox, but isn't necessary |
|
|
68 |
# to fix for creating the initial uNet for segmentation exploration |
|
|
69 |
|
|
|
70 |
# bbox = [bbox_x,bbox_y,bbox_height,bbox_width] |
|
|
71 |
|
|
|
72 |
return(image,one_hot_seg) |
|
|
73 |
|
|
|
74 |
############################################################# |
|
|
75 |
|
|
|
76 |
def load_dataset(file_names): |
|
|
77 |
'''Receives a list of file names from a folder that contains tfrecord files |
|
|
78 |
compiled previously. Takes these names and creates a tensorflow dataset |
|
|
79 |
from them.''' |
|
|
80 |
|
|
|
81 |
ignore_order = tf.data.Options() |
|
|
82 |
ignore_order.experimental_deterministic = False |
|
|
83 |
dataset = tf.data.TFRecordDataset(file_names) |
|
|
84 |
|
|
|
85 |
# you can shard the dataset if you like to reduce the size when necessary |
|
|
86 |
# dataset = dataset.shard(num_shards=2,index=1) |
|
|
87 |
|
|
|
88 |
# order in the file names doesn't really matter, so ignoring it |
|
|
89 |
dataset = dataset.with_options(ignore_order) |
|
|
90 |
|
|
|
91 |
# mapping the dataset using the parse_tf_elements function defined earlier |
|
|
92 |
dataset = dataset.map(parse_tf_elements,num_parallel_calls=1) |
|
|
93 |
|
|
|
94 |
return(dataset) |
|
|
95 |
|
|
|
96 |
############################################################# |
|
|
97 |
|
|
|
98 |
def get_dataset(file_names,batch_size): |
|
|
99 |
'''Receives a list of file names of tfrecord shards from a dataset as well |
|
|
100 |
as a batch size for the dataset.''' |
|
|
101 |
|
|
|
102 |
# uses the load_dataset function to retrieve the files and put them into a |
|
|
103 |
# dataset. |
|
|
104 |
dataset = load_dataset(file_names) |
|
|
105 |
|
|
|
106 |
# creates a shuffle buffer of 1000. Number was arbitrarily chosen, feel free |
|
|
107 |
# to alter as fits your hardware. |
|
|
108 |
dataset = dataset.shuffle(1000) |
|
|
109 |
|
|
|
110 |
# adding the batch size to the dataset |
|
|
111 |
dataset = dataset.batch(batch_size=batch_size) |
|
|
112 |
|
|
|
113 |
return(dataset) |
|
|
114 |
|
|
|
115 |
############################################################# |
|
|
116 |
|
|
|
117 |
def weighted_cce_loss(y_true,y_pred): |
|
|
118 |
'''Yes, this function essentially does what the "fit" argument |
|
|
119 |
"class_weight" does when training a network. I had to create this |
|
|
120 |
separate custom loss function because aparently when using tfrecord files |
|
|
121 |
for reading your dataset a check is performed comparing the input, ground |
|
|
122 |
truth, and weights values to each other. However, a comparison between |
|
|
123 |
the empty None that is passed during the build call of the model and the |
|
|
124 |
weight array/dictionary returns an error. Thus, here is a custom loss |
|
|
125 |
function that applies a weighting to the different classes based on the |
|
|
126 |
distribution of the classes within the entire dataset. For thoroughness' |
|
|
127 |
sake future iteration of the dataset will only base the weights on the |
|
|
128 |
dataset used for training, not the whole dataset.''' |
|
|
129 |
|
|
|
130 |
# weights for each class, as background, connective, muscle, and vasculature |
|
|
131 |
weights = [28.78661087,3.60830475,1.63037567,14.44688883] |
|
|
132 |
|
|
|
133 |
# create a weight for each of the images in the current batch (because the |
|
|
134 |
# weighting for categorical crossentropy needs one per input) |
|
|
135 |
for idx,weight in enumerate(weights): |
|
|
136 |
# making the input a numpy array and not an eager tensor to allow for |
|
|
137 |
# binary index masking. |
|
|
138 |
current_weights = np.asarray(tf.argmax(y_true,axis=-1)).copy().astype( |
|
|
139 |
np.float64) |
|
|
140 |
# create a mask for the current class that then becomes the value of the |
|
|
141 |
# weight. This is then passed to the loss function to apply to each |
|
|
142 |
# pixel. |
|
|
143 |
mask = current_weights==idx |
|
|
144 |
current_weights[mask] = weight |
|
|
145 |
|
|
|
146 |
cce = tf.keras.losses.CategoricalCrossentropy() |
|
|
147 |
cce_loss = cce(y_true,y_pred,current_weights) |
|
|
148 |
|
|
|
149 |
return(cce_loss) |
|
|
150 |
|
|
|
151 |
############################################################# |
|
|
152 |
############################################################# |
|
|
153 |
|
|
|
154 |
# %% Setting up the GPU, and setting memory growth to true so that it is easier |
|
|
155 |
# to see how much memory the training process is taking up exactly. This code is |
|
|
156 |
# from a tensorflow tutorial. |
|
|
157 |
|
|
|
158 |
gpus = tf.config.list_physical_devices('GPU') |
|
|
159 |
if gpus: |
|
|
160 |
try: |
|
|
161 |
for gpu in gpus: |
|
|
162 |
tf.config.experimental.set_memory_growth(gpu, True) |
|
|
163 |
logical_gpus = tf.config.list_logical_devices('GPU') |
|
|
164 |
|
|
|
165 |
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") |
|
|
166 |
except RuntimeError as e: |
|
|
167 |
print(e) |
|
|
168 |
|
|
|
169 |
# use this to set mixed precision for higher efficiency later if you would like |
|
|
170 |
# mixed_precision.set_global_policy('mixed_float16') |
|
|
171 |
|
|
|
172 |
|
|
|
173 |
# %% setting up datasets and building model |
|
|
174 |
|
|
|
175 |
# directory where the dataset shards are stored |
|
|
176 |
shard_dataset_directory = '/home/briancottle/Research/Semantic_Segmentation/dataset_shards_ScaleFactor2' |
|
|
177 |
|
|
|
178 |
os.chdir(shard_dataset_directory) |
|
|
179 |
|
|
|
180 |
# only get the file names that follow the shard naming convention |
|
|
181 |
file_names = tf.io.gfile.glob(shard_dataset_directory + \ |
|
|
182 |
"/shard_*_of_*.tfrecords") |
|
|
183 |
|
|
|
184 |
# first 70% of names go to the training dataset. Following 20% go to the val |
|
|
185 |
# dataset, followed by last 10% go to the testing dataset. |
|
|
186 |
val_split_idx = int(0.7*len(file_names)) |
|
|
187 |
test_split_idx = int(0.9*len(file_names)) |
|
|
188 |
|
|
|
189 |
# separate the file names out |
|
|
190 |
train_files, val_files, test_files = file_names[:val_split_idx],\ |
|
|
191 |
file_names[val_split_idx:test_split_idx],\ |
|
|
192 |
file_names[test_split_idx:] |
|
|
193 |
|
|
|
194 |
# create the datasets. Because of how batches are run for training, we set |
|
|
195 |
# the dataset to repeat() because the batches and epochs are altered from |
|
|
196 |
# standard practice to fit on graphics cards and provide more meaningful and |
|
|
197 |
# frequent updates to the console. |
|
|
198 |
training_dataset = get_dataset(train_files,batch_size=15) |
|
|
199 |
training_dataset = training_dataset.repeat() |
|
|
200 |
validation_dataset = get_dataset(val_files,batch_size = 5) |
|
|
201 |
# testing has a batch size of 1 to facilitate visualization of predictions |
|
|
202 |
testing_dataset = get_dataset(test_files,batch_size=1) |
|
|
203 |
|
|
|
204 |
# %% Putting together the network |
|
|
205 |
|
|
|
206 |
# filter multiplier provided creates largest filter depth of 256 with a |
|
|
207 |
# multiplier of 8. |
|
|
208 |
filter_multiplier = 8 |
|
|
209 |
# encoder convolution parameters |
|
|
210 |
enc_kernel = (3,3) |
|
|
211 |
enc_strides = (1,1) |
|
|
212 |
|
|
|
213 |
# encoder max-pooling parameters |
|
|
214 |
enc_pool_size = (2,2) |
|
|
215 |
enc_pool_strides = (2,2) |
|
|
216 |
|
|
|
217 |
# setting the input size |
|
|
218 |
net_input = keras.Input(shape=(512,512,3),name='original_image') |
|
|
219 |
|
|
|
220 |
################## Encoder ################## |
|
|
221 |
# encoder, block 1 |
|
|
222 |
|
|
|
223 |
# including the image normalization within the network for easier image |
|
|
224 |
# processing during inference |
|
|
225 |
normalized = layers.Normalization()(net_input) |
|
|
226 |
|
|
|
227 |
enc1 = layers.Conv2D(filters=2*filter_multiplier, |
|
|
228 |
kernel_size=enc_kernel, |
|
|
229 |
strides=enc_strides, |
|
|
230 |
padding='same', |
|
|
231 |
name='enc1_conv1')(normalized) |
|
|
232 |
|
|
|
233 |
enc1 = tf.keras.layers.BatchNormalization()(enc1) |
|
|
234 |
enc1 = layers.ReLU()(enc1) |
|
|
235 |
|
|
|
236 |
enc1 = layers.Conv2D(filters=2*filter_multiplier, |
|
|
237 |
kernel_size=enc_kernel, |
|
|
238 |
strides=enc_strides, |
|
|
239 |
padding='same', |
|
|
240 |
name='enc1_conv2')(enc1) |
|
|
241 |
|
|
|
242 |
enc1 = tf.keras.layers.BatchNormalization()(enc1) |
|
|
243 |
enc1 = layers.ReLU()(enc1) |
|
|
244 |
|
|
|
245 |
enc1_pool = layers.MaxPooling2D(pool_size=enc_pool_size, |
|
|
246 |
strides=enc_pool_strides, |
|
|
247 |
padding='same', |
|
|
248 |
name='enc1_pool')(enc1) |
|
|
249 |
|
|
|
250 |
|
|
|
251 |
# encoder, block 2 |
|
|
252 |
enc2 = layers.Conv2D(filters=4*filter_multiplier, |
|
|
253 |
kernel_size=enc_kernel, |
|
|
254 |
strides=enc_strides, |
|
|
255 |
padding='same', |
|
|
256 |
name='enc2_conv1')(enc1_pool) |
|
|
257 |
|
|
|
258 |
enc2 = tf.keras.layers.BatchNormalization()(enc2) |
|
|
259 |
enc2 = layers.ReLU()(enc2) |
|
|
260 |
|
|
|
261 |
enc2 = layers.Conv2D(filters=4*filter_multiplier, |
|
|
262 |
kernel_size=enc_kernel, |
|
|
263 |
strides=enc_strides, |
|
|
264 |
padding='same', |
|
|
265 |
name='enc2_conv2')(enc2) |
|
|
266 |
|
|
|
267 |
enc2 = tf.keras.layers.BatchNormalization()(enc2) |
|
|
268 |
enc2 = layers.ReLU()(enc2) |
|
|
269 |
|
|
|
270 |
enc2_pool = layers.MaxPooling2D(pool_size=enc_pool_size, |
|
|
271 |
strides=enc_pool_strides, |
|
|
272 |
padding='same', |
|
|
273 |
name='enc2_pool')(enc2) |
|
|
274 |
|
|
|
275 |
|
|
|
276 |
# encoder, block 3 |
|
|
277 |
enc3 = layers.Conv2D(filters=8*filter_multiplier, |
|
|
278 |
kernel_size=enc_kernel, |
|
|
279 |
strides=enc_strides, |
|
|
280 |
padding='same', |
|
|
281 |
name='enc3_conv1')(enc2_pool) |
|
|
282 |
|
|
|
283 |
enc3 = tf.keras.layers.BatchNormalization()(enc3) |
|
|
284 |
enc3 = layers.ReLU()(enc3) |
|
|
285 |
|
|
|
286 |
enc3 = layers.Conv2D(filters=8*filter_multiplier, |
|
|
287 |
kernel_size=enc_kernel, |
|
|
288 |
strides=enc_strides, |
|
|
289 |
padding='same', |
|
|
290 |
name='enc3_conv2')(enc3) |
|
|
291 |
|
|
|
292 |
enc3 = tf.keras.layers.BatchNormalization()(enc3) |
|
|
293 |
enc3 = layers.ReLU()(enc3) |
|
|
294 |
|
|
|
295 |
enc3_pool = layers.MaxPooling2D(pool_size=enc_pool_size, |
|
|
296 |
strides=enc_pool_strides, |
|
|
297 |
padding='same', |
|
|
298 |
name='enc3_pool')(enc3) |
|
|
299 |
|
|
|
300 |
# encoder, block 4 |
|
|
301 |
enc4 = layers.Conv2D(filters=16*filter_multiplier, |
|
|
302 |
kernel_size=enc_kernel, |
|
|
303 |
strides=enc_strides, |
|
|
304 |
padding='same', |
|
|
305 |
name='enc4_conv1')(enc3_pool) |
|
|
306 |
|
|
|
307 |
enc4 = tf.keras.layers.BatchNormalization()(enc4) |
|
|
308 |
enc4 = layers.ReLU()(enc4) |
|
|
309 |
|
|
|
310 |
enc4 = layers.Conv2D(filters=16*filter_multiplier, |
|
|
311 |
kernel_size=enc_kernel, |
|
|
312 |
strides=enc_strides, |
|
|
313 |
padding='same', |
|
|
314 |
name='enc4_conv2')(enc4) |
|
|
315 |
|
|
|
316 |
enc4 = tf.keras.layers.BatchNormalization()(enc4) |
|
|
317 |
enc4 = layers.ReLU()(enc4) |
|
|
318 |
|
|
|
319 |
enc4_pool = layers.MaxPooling2D(pool_size=enc_pool_size, |
|
|
320 |
strides=enc_pool_strides, |
|
|
321 |
padding='same', |
|
|
322 |
name='enc4_pool')(enc4) |
|
|
323 |
|
|
|
324 |
|
|
|
325 |
# encoder, block 5 |
|
|
326 |
enc5 = layers.Conv2D(filters=32*filter_multiplier, |
|
|
327 |
kernel_size=enc_kernel, |
|
|
328 |
strides=enc_strides, |
|
|
329 |
padding='same', |
|
|
330 |
name='enc5_conv1')(enc4_pool) |
|
|
331 |
|
|
|
332 |
enc5 = tf.keras.layers.BatchNormalization()(enc5) |
|
|
333 |
enc5 = layers.ReLU()(enc5) |
|
|
334 |
|
|
|
335 |
enc5 = layers.Conv2D(filters=32*filter_multiplier, |
|
|
336 |
kernel_size=enc_kernel, |
|
|
337 |
strides=enc_strides, |
|
|
338 |
padding='same', |
|
|
339 |
name='enc5_conv2')(enc5) |
|
|
340 |
|
|
|
341 |
enc5 = tf.keras.layers.BatchNormalization()(enc5) |
|
|
342 |
enc5 = layers.ReLU()(enc5) |
|
|
343 |
|
|
|
344 |
################## Decoder ################## |
|
|
345 |
|
|
|
346 |
# decoder upconv parameters |
|
|
347 |
dec_upconv_kernel = (2,2) |
|
|
348 |
dec_upconv_stride = (2,2) |
|
|
349 |
|
|
|
350 |
# decoder forward convolution parameters |
|
|
351 |
dec_conv_stride = (1,1) |
|
|
352 |
dec_conv_kernel = (3,3) |
|
|
353 |
|
|
|
354 |
# Decoder, block 4 |
|
|
355 |
dec4_up = layers.Conv2DTranspose(filters=16*filter_multiplier, |
|
|
356 |
kernel_size=dec_upconv_kernel, |
|
|
357 |
strides=dec_upconv_stride, |
|
|
358 |
padding='same', |
|
|
359 |
name='dec4_upconv')(enc5) |
|
|
360 |
|
|
|
361 |
dec4_conc = layers.concatenate([dec4_up,enc4],axis=-1) |
|
|
362 |
|
|
|
363 |
dec4 = layers.Conv2D(filters=16*filter_multiplier, |
|
|
364 |
kernel_size=dec_conv_kernel, |
|
|
365 |
strides=dec_conv_stride, |
|
|
366 |
padding='same', |
|
|
367 |
name='dec4_conv1')(dec4_conc) |
|
|
368 |
|
|
|
369 |
dec4 = tf.keras.layers.BatchNormalization()(dec4) |
|
|
370 |
dec4 = layers.ReLU()(dec4) |
|
|
371 |
|
|
|
372 |
dec4 = layers.Conv2D(filters=16*filter_multiplier, |
|
|
373 |
kernel_size=dec_conv_kernel, |
|
|
374 |
strides=dec_conv_stride, |
|
|
375 |
padding='same', |
|
|
376 |
name='dec4_conv2')(dec4) |
|
|
377 |
|
|
|
378 |
dec4 = tf.keras.layers.BatchNormalization()(dec4) |
|
|
379 |
dec4 = layers.ReLU()(dec4) |
|
|
380 |
|
|
|
381 |
|
|
|
382 |
# Decoder, block 3 |
|
|
383 |
dec3_up = layers.Conv2DTranspose(filters=8*filter_multiplier, |
|
|
384 |
kernel_size=dec_upconv_kernel, |
|
|
385 |
strides=dec_upconv_stride, |
|
|
386 |
padding='same', |
|
|
387 |
name='dec3_upconv')(dec4) |
|
|
388 |
|
|
|
389 |
dec3_conc = layers.concatenate([dec3_up,enc3],axis=-1) |
|
|
390 |
|
|
|
391 |
dec3 = layers.Conv2D(filters=8*filter_multiplier, |
|
|
392 |
kernel_size=dec_conv_kernel, |
|
|
393 |
strides=dec_conv_stride, |
|
|
394 |
padding='same', |
|
|
395 |
name='dec3_conv1')(dec3_conc) |
|
|
396 |
|
|
|
397 |
dec3 = tf.keras.layers.BatchNormalization()(dec3) |
|
|
398 |
dec3 = layers.ReLU()(dec3) |
|
|
399 |
|
|
|
400 |
dec3 = layers.Conv2D(filters=8*filter_multiplier, |
|
|
401 |
kernel_size=dec_conv_kernel, |
|
|
402 |
strides=dec_conv_stride, |
|
|
403 |
padding='same', |
|
|
404 |
name='dec3_conv2')(dec3) |
|
|
405 |
|
|
|
406 |
dec3 = tf.keras.layers.BatchNormalization()(dec3) |
|
|
407 |
dec3 = layers.ReLU()(dec3) |
|
|
408 |
|
|
|
409 |
|
|
|
410 |
# Decoder, block 2 |
|
|
411 |
dec2_up = layers.Conv2DTranspose(filters=4*filter_multiplier, |
|
|
412 |
kernel_size=dec_upconv_kernel, |
|
|
413 |
strides=dec_upconv_stride, |
|
|
414 |
padding='same', |
|
|
415 |
name='dec2_upconv')(dec3) |
|
|
416 |
|
|
|
417 |
dec2_conc = layers.concatenate([dec2_up,enc2],axis=-1) |
|
|
418 |
|
|
|
419 |
dec2 = layers.Conv2D(filters=4*filter_multiplier, |
|
|
420 |
kernel_size=dec_conv_kernel, |
|
|
421 |
strides=dec_conv_stride, |
|
|
422 |
padding='same', |
|
|
423 |
name='dec2_conv1')(dec2_conc) |
|
|
424 |
|
|
|
425 |
dec2 = tf.keras.layers.BatchNormalization()(dec2) |
|
|
426 |
dec2 = layers.ReLU()(dec2) |
|
|
427 |
|
|
|
428 |
dec2 = layers.Conv2D(filters=4*filter_multiplier, |
|
|
429 |
kernel_size=dec_conv_kernel, |
|
|
430 |
strides=dec_conv_stride, |
|
|
431 |
padding='same', |
|
|
432 |
name='dec2_conv2')(dec2) |
|
|
433 |
|
|
|
434 |
dec2 = tf.keras.layers.BatchNormalization()(dec2) |
|
|
435 |
dec2 = layers.ReLU()(dec2) |
|
|
436 |
|
|
|
437 |
|
|
|
438 |
# Decoder, block 1 |
|
|
439 |
dec1_up = layers.Conv2DTranspose(filters=2*filter_multiplier, |
|
|
440 |
kernel_size=dec_upconv_kernel, |
|
|
441 |
strides=dec_upconv_stride, |
|
|
442 |
padding='same', |
|
|
443 |
name='dec1_upconv')(dec2) |
|
|
444 |
|
|
|
445 |
dec1_conc = layers.concatenate([dec1_up,enc1],axis=-1) |
|
|
446 |
|
|
|
447 |
dec1 = layers.Conv2D(filters=2*filter_multiplier, |
|
|
448 |
kernel_size=dec_conv_kernel, |
|
|
449 |
strides=dec_conv_stride, |
|
|
450 |
padding='same', |
|
|
451 |
name='dec1_conv1')(dec1_conc) |
|
|
452 |
|
|
|
453 |
dec1 = tf.keras.layers.BatchNormalization()(dec1) |
|
|
454 |
dec1 = layers.ReLU()(dec1) |
|
|
455 |
|
|
|
456 |
dec1 = layers.Conv2D(filters=2*filter_multiplier, |
|
|
457 |
kernel_size=dec_conv_kernel, |
|
|
458 |
strides=dec_conv_stride, |
|
|
459 |
padding='same', |
|
|
460 |
name='dec1_conv2')(dec1) |
|
|
461 |
|
|
|
462 |
dec1 = tf.keras.layers.BatchNormalization()(dec1) |
|
|
463 |
dec1 = layers.ReLU()(dec1) |
|
|
464 |
|
|
|
465 |
conv_seg = layers.Conv2D(filters=4, |
|
|
466 |
kernel_size=(1,1), |
|
|
467 |
name='conv_feature_map')(dec1) |
|
|
468 |
|
|
|
469 |
prob_dist = layers.Softmax(dtype='float32')(conv_seg) |
|
|
470 |
|
|
|
471 |
unet = keras.Model(inputs=net_input,outputs=prob_dist,name='uNet') |
|
|
472 |
|
|
|
473 |
unet.summary() |
|
|
474 |
|
|
|
475 |
# %% setting up training |
|
|
476 |
|
|
|
477 |
cce = tf.keras.losses.CategoricalCrossentropy() |
|
|
478 |
|
|
|
479 |
# running network eagerly because it allows us to use convert a tensor to a |
|
|
480 |
# numpy array to help with the weighted loss calculation. |
|
|
481 |
unet.compile( |
|
|
482 |
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001), |
|
|
483 |
loss=weighted_cce_loss, |
|
|
484 |
run_eagerly=True, |
|
|
485 |
metrics=[tf.keras.metrics.Precision(name='precision'), |
|
|
486 |
tf.keras.metrics.Recall(name='recall')] |
|
|
487 |
) |
|
|
488 |
|
|
|
489 |
# %% |
|
|
490 |
reduce_lr = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_recall', |
|
|
491 |
mode='max', |
|
|
492 |
factor=0.8, |
|
|
493 |
patience=3, |
|
|
494 |
min_lr=0.00001, |
|
|
495 |
verbose=True) |
|
|
496 |
|
|
|
497 |
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint('unet_seg_subclassed.h5', |
|
|
498 |
save_best_only=True, |
|
|
499 |
save_weights_only=True, |
|
|
500 |
monitor='val_recall', |
|
|
501 |
mode='max', |
|
|
502 |
verbose=True) |
|
|
503 |
|
|
|
504 |
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=8, |
|
|
505 |
monitor='val_recall', |
|
|
506 |
mode='max', |
|
|
507 |
restore_best_weights=True, |
|
|
508 |
verbose=True) |
|
|
509 |
|
|
|
510 |
num_steps = 150 |
|
|
511 |
|
|
|
512 |
history = unet.fit(training_dataset, |
|
|
513 |
epochs=20, |
|
|
514 |
steps_per_epoch=num_steps, |
|
|
515 |
validation_data=validation_dataset, |
|
|
516 |
callbacks=[checkpoint_cb, |
|
|
517 |
early_stopping_cb, |
|
|
518 |
reduce_lr]) |
|
|
519 |
|
|
|
520 |
# %% |
|
|
521 |
# evaluate the network after loading the weights |
|
|
522 |
unet.load_weights('./unet_seg_functional.h5') |
|
|
523 |
results = unet.evaluate(testing_dataset) |
|
|
524 |
|
|
|
525 |
# %% |
|
|
526 |
# extracting loss vs epoch |
|
|
527 |
loss = history.history['loss'] |
|
|
528 |
val_loss = history.history['val_loss'] |
|
|
529 |
# extracting precision vs epoch |
|
|
530 |
precision = history.history['precision'] |
|
|
531 |
val_precision = history.history['val_precision'] |
|
|
532 |
# extracting recall vs epoch |
|
|
533 |
recall = history.history['recall'] |
|
|
534 |
val_recall = history.history['val_recall'] |
|
|
535 |
|
|
|
536 |
epochs = range(len(loss)) |
|
|
537 |
|
|
|
538 |
figs, axes = plt.subplots(3,1) |
|
|
539 |
|
|
|
540 |
# plotting loss and validation loss |
|
|
541 |
axes[0].plot(epochs,loss) |
|
|
542 |
axes[0].plot(epochs,val_loss) |
|
|
543 |
axes[0].legend(['loss','val_loss']) |
|
|
544 |
axes[0].set(xlabel='epochs',ylabel='crossentropy loss') |
|
|
545 |
|
|
|
546 |
# plotting precision and validation precision |
|
|
547 |
axes[1].plot(epochs,precision) |
|
|
548 |
axes[1].plot(epochs,val_precision) |
|
|
549 |
axes[1].legend(['precision','val_precision']) |
|
|
550 |
axes[1].set(xlabel='epochs',ylabel='precision') |
|
|
551 |
|
|
|
552 |
# plotting recall validation recall |
|
|
553 |
axes[2].plot(epochs,recall) |
|
|
554 |
axes[2].plot(epochs,val_recall) |
|
|
555 |
axes[2].legend(['recall','val_recall']) |
|
|
556 |
axes[2].set(xlabel='epochs',ylabel='recall') |
|
|
557 |
|
|
|
558 |
|
|
|
559 |
# %% exploring the predictions to better understand what the network is doing |
|
|
560 |
|
|
|
561 |
images = [] |
|
|
562 |
gt = [] |
|
|
563 |
predictions = [] |
|
|
564 |
|
|
|
565 |
# taking out 10 of the next samples from the testing dataset and iterating |
|
|
566 |
# through them |
|
|
567 |
for sample in testing_dataset.take(10): |
|
|
568 |
# make sure it is producing the correct dimensions |
|
|
569 |
print(sample[0].shape) |
|
|
570 |
# take the image and convert it back to RGB, store in list |
|
|
571 |
image = sample[0] |
|
|
572 |
image = cv.cvtColor(np.squeeze(np.asarray(image).copy()),cv.COLOR_BGR2RGB) |
|
|
573 |
images.append(image) |
|
|
574 |
# extract the ground truth and store in list |
|
|
575 |
ground_truth = sample[1] |
|
|
576 |
gt.append(ground_truth) |
|
|
577 |
# perform inference |
|
|
578 |
out = unet.predict(sample[0]) |
|
|
579 |
predictions.append(out) |
|
|
580 |
# show the original input image |
|
|
581 |
plt.imshow(image) |
|
|
582 |
plt.show() |
|
|
583 |
# flatten the ground truth from one-hot encoded along the last axis, and |
|
|
584 |
# show the resulting image |
|
|
585 |
squeezed_gt = tf.argmax(ground_truth,axis=-1) |
|
|
586 |
squeezed_prediction = tf.argmax(out,axis=-1) |
|
|
587 |
plt.imshow(squeezed_gt[0,:,:]) |
|
|
588 |
# print the number of classes in this tile |
|
|
589 |
print(np.unique(squeezed_gt)) |
|
|
590 |
plt.show() |
|
|
591 |
# show the flattened predictions |
|
|
592 |
plt.imshow(squeezed_prediction[0,:,:]) |
|
|
593 |
print(np.unique(squeezed_prediction)) |
|
|
594 |
plt.show() |
|
|
595 |
|
|
|
596 |
# %% |
|
|
597 |
# select one of the images cycled through above to investigate furtehr |
|
|
598 |
image_to_investigate = 2 |
|
|
599 |
|
|
|
600 |
# show the original image |
|
|
601 |
plt.imshow(images[image_to_investigate]) |
|
|
602 |
plt.show() |
|
|
603 |
|
|
|
604 |
# show the ground truth for this tile |
|
|
605 |
squeezed_gt = tf.argmax(gt[image_to_investigate],axis=-1) |
|
|
606 |
plt.imshow(squeezed_gt[0,:,:]) |
|
|
607 |
# print the number of unique classes in the ground truth |
|
|
608 |
print(np.unique(squeezed_gt)) |
|
|
609 |
plt.show() |
|
|
610 |
# flatten the prediction and show the probability distribution |
|
|
611 |
squeezed_prediction = tf.argmax(predictions[image_to_investigate],axis=-1) |
|
|
612 |
plt.imshow(predictions[image_to_investigate][0,:,:,3]) |
|
|
613 |
plt.show() |
|
|
614 |
# show the flattened image |
|
|
615 |
plt.imshow(squeezed_prediction[0,:,:]) |
|
|
616 |
print(np.unique(squeezed_prediction)) |
|
|
617 |
plt.show() |