|
a |
|
b/uNet_FullImage_Segmentation.py |
|
|
1 |
# %% importing packages |
|
|
2 |
|
|
|
3 |
import numpy as np |
|
|
4 |
import tensorflow as tf |
|
|
5 |
from tensorflow import keras |
|
|
6 |
from tensorflow.keras import layers |
|
|
7 |
from tensorflow.keras import mixed_precision |
|
|
8 |
from tensorflow.python.ops.numpy_ops import np_config |
|
|
9 |
np_config.enable_numpy_behavior() |
|
|
10 |
from skimage import measure |
|
|
11 |
from skimage import morphology |
|
|
12 |
from scipy import ndimage |
|
|
13 |
import cv2 as cv |
|
|
14 |
import os |
|
|
15 |
import matplotlib.pyplot as plt |
|
|
16 |
import tqdm |
|
|
17 |
from natsort import natsorted |
|
|
18 |
plt.rcParams['figure.figsize'] = [50, 150] |
|
|
19 |
|
|
|
20 |
|
|
|
21 |
# %% Citations |
|
|
22 |
############################################################# |
|
|
23 |
############################################################# |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
# Defining Functions |
|
|
27 |
############################################################# |
|
|
28 |
############################################################# |
|
|
29 |
|
|
|
30 |
class EncoderBlock(layers.Layer): |
|
|
31 |
'''This function returns an encoder block with two convolutional layers and |
|
|
32 |
an option for returning both a max-pooled output with a stride and pool |
|
|
33 |
size of (2,2) and the output of the second convolution for skip |
|
|
34 |
connections implemented later in the network during the decoding |
|
|
35 |
section. All padding is set to "same" for cleanliness. |
|
|
36 |
|
|
|
37 |
When initializing it receives the number of filters to be used in both |
|
|
38 |
of the convolutional layers as well as the kernel size and stride for |
|
|
39 |
those same layers. It also receives the trainable variable for use with |
|
|
40 |
the batch normalization layers.''' |
|
|
41 |
|
|
|
42 |
def __init__(self, |
|
|
43 |
filters, |
|
|
44 |
kernel_size=(3,3), |
|
|
45 |
strides=(1,1), |
|
|
46 |
trainable=True, |
|
|
47 |
name='encoder_block', |
|
|
48 |
**kwargs): |
|
|
49 |
|
|
|
50 |
super(EncoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
51 |
# When initializing this object receives a trainable parameter for |
|
|
52 |
# freezing the convolutional layers. |
|
|
53 |
|
|
|
54 |
# including the image normalization within the network for easier image |
|
|
55 |
# processing during inference |
|
|
56 |
self.image_normalization = layers.Normalization() |
|
|
57 |
|
|
|
58 |
# below creates the first of two convolutional layers |
|
|
59 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
60 |
kernel_size=kernel_size, |
|
|
61 |
strides=strides, |
|
|
62 |
padding='same', |
|
|
63 |
name='encoder_conv1', |
|
|
64 |
trainable=trainable) |
|
|
65 |
|
|
|
66 |
# second of two convolutional layers |
|
|
67 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
68 |
kernel_size=kernel_size, |
|
|
69 |
strides=strides, |
|
|
70 |
padding='same', |
|
|
71 |
name='encoder_conv2', |
|
|
72 |
trainable=trainable) |
|
|
73 |
|
|
|
74 |
# creates the max-pooling layer for downsampling the image. |
|
|
75 |
self.enc_pool = layers.MaxPool2D(pool_size=(2,2), |
|
|
76 |
strides=(2,2), |
|
|
77 |
padding='same', |
|
|
78 |
name='enc_pool') |
|
|
79 |
|
|
|
80 |
# ReLU layer for activations. |
|
|
81 |
self.ReLU = layers.ReLU() |
|
|
82 |
|
|
|
83 |
# both batch normalization layers for use with their corresponding |
|
|
84 |
# convolutional layers. |
|
|
85 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
86 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
87 |
|
|
|
88 |
def call(self,input,training=True,include_pool=True): |
|
|
89 |
|
|
|
90 |
# first conv of the encoder block |
|
|
91 |
x = self.image_normalization(input) |
|
|
92 |
x = self.conv1(x) |
|
|
93 |
x = self.batch_norm1(x,training=training) |
|
|
94 |
x = self.ReLU(x) |
|
|
95 |
|
|
|
96 |
# second conv of the encoder block |
|
|
97 |
x = self.conv2(x) |
|
|
98 |
x = self.batch_norm2(x,training=training) |
|
|
99 |
x = self.ReLU(x) |
|
|
100 |
|
|
|
101 |
# calculate and include the max pooling layer if include_pool is true. |
|
|
102 |
# This output is used for the skip connections later in the network. |
|
|
103 |
if include_pool: |
|
|
104 |
pooled_x = self.enc_pool(x) |
|
|
105 |
return(x,pooled_x) |
|
|
106 |
|
|
|
107 |
else: |
|
|
108 |
return(x) |
|
|
109 |
|
|
|
110 |
|
|
|
111 |
############################################################# |
|
|
112 |
|
|
|
113 |
class DecoderBlock(layers.Layer): |
|
|
114 |
'''This function returns a decoder block that when called receives both an |
|
|
115 |
input and a "skip connection". The input is passed to the |
|
|
116 |
"up convolution" or transpose conv layer to double the dimensions before |
|
|
117 |
being concatenated with its associated skip connection from the encoder |
|
|
118 |
section of the network. All padding is set to "same" for cleanliness. |
|
|
119 |
The decoder block also has an option for including an additional |
|
|
120 |
"segmentation" layer, which is a (1,1) convolution with 4 filters, which |
|
|
121 |
produces the logits for the one-hot encoded ground truth. |
|
|
122 |
|
|
|
123 |
When initializing it receives the number of filters to be used in the |
|
|
124 |
up convolutional layer as well as the other two forward convolutions. |
|
|
125 |
The received kernel_size and stride is used for the forward convolutions, |
|
|
126 |
with the up convolution kernel and stride set to be (2,2).''' |
|
|
127 |
def __init__(self, |
|
|
128 |
filters, |
|
|
129 |
trainable=True, |
|
|
130 |
kernel_size=(3,3), |
|
|
131 |
strides=(1,1), |
|
|
132 |
name='DecoderBlock', |
|
|
133 |
**kwargs): |
|
|
134 |
|
|
|
135 |
super(DecoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
136 |
|
|
|
137 |
# creating the up convolution layer |
|
|
138 |
self.up_conv = layers.Conv2DTranspose(filters=filters, |
|
|
139 |
kernel_size=(2,2), |
|
|
140 |
strides=(2,2), |
|
|
141 |
padding='same', |
|
|
142 |
name='decoder_upconv', |
|
|
143 |
trainable=trainable) |
|
|
144 |
|
|
|
145 |
# the first of two forward convolutional layers |
|
|
146 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
147 |
kernel_size=kernel_size, |
|
|
148 |
strides=strides, |
|
|
149 |
padding='same', |
|
|
150 |
name ='decoder_conv1', |
|
|
151 |
trainable=trainable) |
|
|
152 |
|
|
|
153 |
# second convolutional layer |
|
|
154 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
155 |
kernel_size=kernel_size, |
|
|
156 |
strides=strides, |
|
|
157 |
padding='same', |
|
|
158 |
name ='decoder_conv2', |
|
|
159 |
trainable=trainable) |
|
|
160 |
|
|
|
161 |
# this creates the output prediction logits layer. |
|
|
162 |
self.seg_out = layers.Conv2D(filters=7, |
|
|
163 |
kernel_size=(1,1), |
|
|
164 |
name='conv_feature_map') |
|
|
165 |
|
|
|
166 |
# ReLU for activation of all above layers |
|
|
167 |
self.ReLU = layers.ReLU() |
|
|
168 |
|
|
|
169 |
# the individual batch normalization layers for their respective |
|
|
170 |
# convolutional layers. |
|
|
171 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
172 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
173 |
|
|
|
174 |
|
|
|
175 |
def call(self,input,skip_conn,training=True,segmentation=False): |
|
|
176 |
|
|
|
177 |
up = self.up_conv(input) # perform image up convolution |
|
|
178 |
# concatenate the input and the skip_conn along the features axis |
|
|
179 |
concatenated = layers.concatenate([up,skip_conn],axis=-1) |
|
|
180 |
|
|
|
181 |
# first convolution |
|
|
182 |
x = self.conv1(concatenated) |
|
|
183 |
x = self.batch_norm1(x,training=training) |
|
|
184 |
x = self.ReLU(x) |
|
|
185 |
|
|
|
186 |
# second convolution |
|
|
187 |
x = self.conv2(x) |
|
|
188 |
x = self.batch_norm2(x,training=training) |
|
|
189 |
x = self.ReLU(x) |
|
|
190 |
|
|
|
191 |
# if segmentation is True, then run the segmentation (1,1) convolution |
|
|
192 |
# and use the Softmax to produce a probability distribution. |
|
|
193 |
if segmentation: |
|
|
194 |
seg = self.seg_out(x) |
|
|
195 |
# deliberately set as "float32" to ensure proper calculation if |
|
|
196 |
# switching to mixed precision for efficiency |
|
|
197 |
prob = layers.Softmax(dtype='float32')(seg) |
|
|
198 |
return(prob) |
|
|
199 |
|
|
|
200 |
else: |
|
|
201 |
return(x) |
|
|
202 |
|
|
|
203 |
|
|
|
204 |
############################################################# |
|
|
205 |
|
|
|
206 |
class uNet(keras.Model): |
|
|
207 |
'''This is a sub-classed model that uses the encoder and decoder blocks |
|
|
208 |
defined above to create a custom unet. The differences from the original |
|
|
209 |
paper include a variable filter scalar (filter_multiplier), batch |
|
|
210 |
normalization between each convolutional layer and the associated ReLU |
|
|
211 |
activation, as well as feature normalization implemented in the first |
|
|
212 |
layer of the network.''' |
|
|
213 |
def __init__(self,filter_multiplier=2,**kwargs): |
|
|
214 |
super(uNet,self).__init__() |
|
|
215 |
|
|
|
216 |
# Defining encoder blocks |
|
|
217 |
self.encoder_block1 = EncoderBlock(filters=2*filter_multiplier, |
|
|
218 |
name='Enc1') |
|
|
219 |
self.encoder_block2 = EncoderBlock(filters=4*filter_multiplier, |
|
|
220 |
name='Enc2') |
|
|
221 |
self.encoder_block3 = EncoderBlock(filters=8*filter_multiplier, |
|
|
222 |
name='Enc3') |
|
|
223 |
self.encoder_block4 = EncoderBlock(filters=16*filter_multiplier, |
|
|
224 |
name='Enc4') |
|
|
225 |
self.encoder_block5 = EncoderBlock(filters=32*filter_multiplier, |
|
|
226 |
name='Enc5') |
|
|
227 |
|
|
|
228 |
# Defining decoder blocks. The names are in reverse order to make it |
|
|
229 |
# (hopefully) easier to understand which skip connections are associated |
|
|
230 |
# with which decoder layers. |
|
|
231 |
self.decoder_block4 = DecoderBlock(filters=16*filter_multiplier, |
|
|
232 |
name='Dec4') |
|
|
233 |
self.decoder_block3 = DecoderBlock(filters=8*filter_multiplier, |
|
|
234 |
name='Dec3') |
|
|
235 |
self.decoder_block2 = DecoderBlock(filters=4*filter_multiplier, |
|
|
236 |
name='Dec2') |
|
|
237 |
self.decoder_block1 = DecoderBlock(filters=2*filter_multiplier, |
|
|
238 |
name='Dec1') |
|
|
239 |
|
|
|
240 |
|
|
|
241 |
def call(self,inputs,training): |
|
|
242 |
|
|
|
243 |
# encoder |
|
|
244 |
enc1,enc1_pool = self.encoder_block1(input=inputs,training=training) |
|
|
245 |
enc2,enc2_pool = self.encoder_block2(input=enc1_pool,training=training) |
|
|
246 |
enc3,enc3_pool = self.encoder_block3(input=enc2_pool,training=training) |
|
|
247 |
enc4,enc4_pool = self.encoder_block4(input=enc3_pool,training=training) |
|
|
248 |
enc5 = self.encoder_block5(input=enc4_pool, |
|
|
249 |
include_pool=False, |
|
|
250 |
training=training) |
|
|
251 |
|
|
|
252 |
# decoder |
|
|
253 |
dec4 = self.decoder_block4(input=enc5,skip_conn=enc4,training=training) |
|
|
254 |
dec3 = self.decoder_block3(input=dec4,skip_conn=enc3,training=training) |
|
|
255 |
dec2 = self.decoder_block2(input=dec3,skip_conn=enc2,training=training) |
|
|
256 |
seg_logits_out = self.decoder_block1(input=dec2, |
|
|
257 |
skip_conn=enc1, |
|
|
258 |
segmentation=True, |
|
|
259 |
training=training) |
|
|
260 |
|
|
|
261 |
return(seg_logits_out) |
|
|
262 |
|
|
|
263 |
############################################################# |
|
|
264 |
|
|
|
265 |
def get_image_blocks(image,tile_distance=512,tile_size=1024): |
|
|
266 |
'''Receives an image as well as a minimum distance between tiles. |
|
|
267 |
Returns the name of the image processed, the image dimensions, and a list |
|
|
268 |
of tile centers evenly distributed across the tissue surface.''' |
|
|
269 |
|
|
|
270 |
tissue_outline = image[:,:,3] != 0 |
|
|
271 |
tissue_outline = ndimage.binary_fill_holes(tissue_outline) |
|
|
272 |
image_dimensions = tissue_outline.shape |
|
|
273 |
|
|
|
274 |
safe_mask = np.zeros(image_dimensions) |
|
|
275 |
safe_mask[int(tile_size/2):image_dimensions[0]-int(tile_size/2), |
|
|
276 |
int(tile_size/2):image_dimensions[1]-int(tile_size/2)] = 1 |
|
|
277 |
|
|
|
278 |
grid_0 = np.arange(0,image_dimensions[0],tile_distance) |
|
|
279 |
grid_1 = np.arange(0,image_dimensions[1],tile_distance) |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
|
|
|
283 |
center_indexes = [] |
|
|
284 |
|
|
|
285 |
for grid0 in grid_0: |
|
|
286 |
for grid1 in grid_1: |
|
|
287 |
if safe_mask[grid0,grid1]: |
|
|
288 |
center_indexes.append([grid0,grid1]) |
|
|
289 |
|
|
|
290 |
# for y,x, in center_indexes: |
|
|
291 |
# plt.plot(x,y,marker='o',color='red',markersize=25) |
|
|
292 |
# plt.imshow(tissue_outline) |
|
|
293 |
|
|
|
294 |
# plt.show() |
|
|
295 |
|
|
|
296 |
return([image_dimensions,center_indexes]) |
|
|
297 |
|
|
|
298 |
############################################################# |
|
|
299 |
|
|
|
300 |
def get_reduced_tile_indexes(tile_center,returned_size=512): |
|
|
301 |
start_0 = int(tile_center[0] - returned_size/2) |
|
|
302 |
end_0 = int(tile_center[0] + returned_size/2) |
|
|
303 |
|
|
|
304 |
start_1 = int(tile_center[1] - returned_size/2) |
|
|
305 |
end_1 = int(tile_center[1] + returned_size/2) |
|
|
306 |
|
|
|
307 |
return([start_0,end_0],[start_1,end_1]) |
|
|
308 |
|
|
|
309 |
############################################################# |
|
|
310 |
|
|
|
311 |
def segment_tiles(unet,center_indexes,image,scaling_factor=1,tile_size=4096): |
|
|
312 |
|
|
|
313 |
m,n,z = image.shape |
|
|
314 |
segmentation = np.zeros((m,n)) |
|
|
315 |
|
|
|
316 |
for idx in tqdm.tqdm(range(len(center_indexes))): |
|
|
317 |
center = center_indexes[idx] |
|
|
318 |
dim0, dim1 = get_reduced_tile_indexes(center,tile_size) |
|
|
319 |
sub_sectioned_tile = image[dim0[0]:dim0[1],dim1[0]:dim1[1]] |
|
|
320 |
|
|
|
321 |
full_tile_dim0,full_tile_dim1,z = sub_sectioned_tile.shape |
|
|
322 |
|
|
|
323 |
color_tile = sub_sectioned_tile[:,:,0:3] |
|
|
324 |
seg_tile = sub_sectioned_tile[:,:,3] |
|
|
325 |
|
|
|
326 |
if scaling_factor > 1: |
|
|
327 |
height = color_tile.shape[0] |
|
|
328 |
width = color_tile.shape[1] |
|
|
329 |
|
|
|
330 |
height2 = int(height/scaling_factor) |
|
|
331 |
width2 = int(width/scaling_factor) |
|
|
332 |
|
|
|
333 |
color_tile = cv.resize(color_tile,[height2,width2],cv.INTER_AREA) |
|
|
334 |
|
|
|
335 |
if scaling_factor > 1: |
|
|
336 |
height = seg_tile.shape[0] |
|
|
337 |
width = seg_tile.shape[1] |
|
|
338 |
|
|
|
339 |
height2 = int(height/scaling_factor) |
|
|
340 |
width2 = int(width/scaling_factor) |
|
|
341 |
|
|
|
342 |
seg_tile = cv.resize(seg_tile,[height2,width2],cv.INTER_LINEAR) |
|
|
343 |
|
|
|
344 |
color_tile = color_tile[None,:,:,:] |
|
|
345 |
|
|
|
346 |
prediction = unet.predict(color_tile,verbose=0) |
|
|
347 |
|
|
|
348 |
prediction_tile = np.squeeze(np.asarray(tf.argmax(prediction,axis=-1)).astype(np.float32).copy()) |
|
|
349 |
|
|
|
350 |
if scaling_factor > 1: |
|
|
351 |
prediction_tile = cv.resize(prediction_tile,[full_tile_dim0,full_tile_dim1],cv.INTER_LINEAR) |
|
|
352 |
|
|
|
353 |
|
|
|
354 |
dim0, dim1 = get_reduced_tile_indexes(center,returned_size=512) |
|
|
355 |
|
|
|
356 |
# fix this hard coding of the tile indexes for the prediction |
|
|
357 |
segmentation[dim0[0]:dim0[1],dim1[0]:dim1[1]] = prediction_tile[256:768,256:768] |
|
|
358 |
|
|
|
359 |
return(segmentation) |
|
|
360 |
|
|
|
361 |
############################################################# |
|
|
362 |
|
|
|
363 |
def double_check_produced_dataset(new_directory,image_idx=0): |
|
|
364 |
'''this function samples a random image from a given directory, crops off |
|
|
365 |
the ground truth from the 4th layer, and displays the color image to |
|
|
366 |
verify they work.''' |
|
|
367 |
os.chdir(new_directory) |
|
|
368 |
file_names = tf.io.gfile.glob('./*.png') |
|
|
369 |
file_names = natsorted(file_names) |
|
|
370 |
# pick a random image index number |
|
|
371 |
if image_idx == 0: |
|
|
372 |
image_idx = int(np.random.random()*len(file_names)) |
|
|
373 |
else: |
|
|
374 |
pass |
|
|
375 |
|
|
|
376 |
print(image_idx) |
|
|
377 |
# reading specific file from the random index |
|
|
378 |
segmentation = cv.imread(file_names[image_idx],cv.IMREAD_UNCHANGED) |
|
|
379 |
# changing the color for the tile from BGR to RGB |
|
|
380 |
print(file_names[image_idx]) |
|
|
381 |
# plotting the images next to each other |
|
|
382 |
plt.imshow(segmentation,vmin=0, vmax=6) |
|
|
383 |
print(np.unique(segmentation)) |
|
|
384 |
plt.show() |
|
|
385 |
|
|
|
386 |
############################################################# |
|
|
387 |
############################################################# |
|
|
388 |
# %% |
|
|
389 |
full_image_directory = '/media/briancottle/Samsung_T5/ML_Dataset_5/' |
|
|
390 |
file_names = tf.io.gfile.glob(full_image_directory + '*.png') |
|
|
391 |
|
|
|
392 |
# %% |
|
|
393 |
tile_size = 1024 |
|
|
394 |
unet_directory = '/home/briancottle/Research/Semantic_Segmentation/dataset_shards_4' |
|
|
395 |
os.chdir(unet_directory) |
|
|
396 |
sample_data = np.zeros((1,1024,1024,3)).astype(np.int8) |
|
|
397 |
unet = uNet(filter_multiplier=12) |
|
|
398 |
out = unet(sample_data) |
|
|
399 |
unet.summary() |
|
|
400 |
unet.load_weights('./unet_seg_weights.49-0.52-0.94-0.92.h5') |
|
|
401 |
|
|
|
402 |
# %% |
|
|
403 |
|
|
|
404 |
image = cv.imread(file_names[420],cv.IMREAD_UNCHANGED) |
|
|
405 |
image = cv.copyMakeBorder(image,2000,2000,2000,2000,cv.BORDER_REPLICATE) |
|
|
406 |
|
|
|
407 |
# %% |
|
|
408 |
dimensions,center_indexes = get_image_blocks(image, |
|
|
409 |
tile_distance=512, |
|
|
410 |
tile_size=tile_size |
|
|
411 |
) |
|
|
412 |
|
|
|
413 |
segmentation = segment_tiles(unet, |
|
|
414 |
center_indexes, |
|
|
415 |
image, |
|
|
416 |
scaling_factor=1, |
|
|
417 |
tile_size=tile_size) |
|
|
418 |
|
|
|
419 |
# %% |
|
|
420 |
corrected_image = cv.cvtColor(image,cv.COLOR_BGR2RGB) |
|
|
421 |
plt.imshow(corrected_image[:,:,0:3]) |
|
|
422 |
plt.show() |
|
|
423 |
plt.imshow(image[:,:,3]) |
|
|
424 |
plt.show() |
|
|
425 |
plt.imshow(segmentation) |
|
|
426 |
plt.show() |
|
|
427 |
|
|
|
428 |
# %% |
|
|
429 |
|
|
|
430 |
double_check_produced_dataset('/var/confocaldata/HumanNodal/HeartData/10/02/uNet_Segmentations', |
|
|
431 |
image_idx=0) |
|
|
432 |
# %% |