|
a |
|
b/directory_segmentation.py |
|
|
1 |
#!/usr/bin/env python3 |
|
|
2 |
""" |
|
|
3 |
Author : briancottle |
|
|
4 |
Date : 2022-12-14 |
|
|
5 |
Purpose: Segment an entire directory of histological .JPG files using the |
|
|
6 |
user provided uNet weights generated and saved by the uNet_Subclassed_SCCE.py |
|
|
7 |
file. |
|
|
8 |
""" |
|
|
9 |
|
|
|
10 |
import argparse |
|
|
11 |
from typing import NamedTuple, TextIO |
|
|
12 |
import numpy as np |
|
|
13 |
import tensorflow as tf |
|
|
14 |
from tensorflow import keras |
|
|
15 |
from tensorflow.keras import layers |
|
|
16 |
from tensorflow.keras import mixed_precision |
|
|
17 |
from tensorflow.python.ops.numpy_ops import np_config |
|
|
18 |
np_config.enable_numpy_behavior() |
|
|
19 |
from skimage import measure |
|
|
20 |
from skimage import morphology |
|
|
21 |
from scipy import ndimage |
|
|
22 |
import cv2 as cv |
|
|
23 |
import os |
|
|
24 |
import matplotlib.pyplot as plt |
|
|
25 |
import tqdm |
|
|
26 |
from natsort import natsorted |
|
|
27 |
|
|
|
28 |
# -------------------------------------------------- |
|
|
29 |
|
|
|
30 |
class Args(NamedTuple): |
|
|
31 |
""" Command-line arguments """ |
|
|
32 |
uNet_weights: str |
|
|
33 |
jpg_directory: str |
|
|
34 |
heart_id: str |
|
|
35 |
GPU_id: str |
|
|
36 |
threshold: int |
|
|
37 |
|
|
|
38 |
|
|
|
39 |
# -------------------------------------------------- |
|
|
40 |
|
|
|
41 |
def get_args() -> Args: |
|
|
42 |
""" Get command-line arguments """ |
|
|
43 |
|
|
|
44 |
parser = argparse.ArgumentParser( |
|
|
45 |
description='Providing command line arguments.', |
|
|
46 |
formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
|
|
47 |
|
|
|
48 |
parser.add_argument('-u', |
|
|
49 |
'--uNet_weights', |
|
|
50 |
type=str, |
|
|
51 |
metavar='uNet', |
|
|
52 |
help='Path to an .h5 file created using the ' |
|
|
53 |
'architecture established in uNet_Subclassed_SCCE.py' |
|
|
54 |
' file.') |
|
|
55 |
|
|
|
56 |
parser.add_argument('-d', |
|
|
57 |
'--jpg_directory', |
|
|
58 |
help='The directory containing the .jpg files for ' |
|
|
59 |
'segmentation', |
|
|
60 |
metavar='Dir', |
|
|
61 |
type=str, |
|
|
62 |
default='') |
|
|
63 |
|
|
|
64 |
parser.add_argument('-i', |
|
|
65 |
'--heart_id', |
|
|
66 |
help='The two digit heart ID for the data being ' |
|
|
67 |
'segmented', |
|
|
68 |
metavar='HID', |
|
|
69 |
type=str, |
|
|
70 |
default='') |
|
|
71 |
|
|
|
72 |
parser.add_argument('-g', |
|
|
73 |
'--GPU_id', |
|
|
74 |
help='the GPU number for the session to run on', |
|
|
75 |
metavar='GPU', |
|
|
76 |
type=str, |
|
|
77 |
default='') |
|
|
78 |
|
|
|
79 |
parser.add_argument('-t', |
|
|
80 |
'--threshold', |
|
|
81 |
help='what arbitrary threshold to use for confidence segmenting', |
|
|
82 |
metavar='int', |
|
|
83 |
type=int, |
|
|
84 |
default=3) |
|
|
85 |
|
|
|
86 |
|
|
|
87 |
|
|
|
88 |
args = parser.parse_args() |
|
|
89 |
|
|
|
90 |
return Args(args.uNet_weights, |
|
|
91 |
args.jpg_directory, |
|
|
92 |
args.heart_id, |
|
|
93 |
args.GPU_id, |
|
|
94 |
args.threshold, |
|
|
95 |
) |
|
|
96 |
|
|
|
97 |
|
|
|
98 |
# -------------------------------------------------- |
|
|
99 |
# -------------------------------------------------- |
|
|
100 |
|
|
|
101 |
class EncoderBlock(layers.Layer): |
|
|
102 |
'''This function returns an encoder block with two convolutional layers and |
|
|
103 |
an option for returning both a max-pooled output with a stride and pool |
|
|
104 |
size of (2,2) and the output of the second convolution for skip |
|
|
105 |
connections implemented later in the network during the decoding |
|
|
106 |
section. All padding is set to "same" for cleanliness. |
|
|
107 |
|
|
|
108 |
When initializing it receives the number of filters to be used in both |
|
|
109 |
of the convolutional layers as well as the kernel size and stride for |
|
|
110 |
those same layers. It also receives the trainable variable for use with |
|
|
111 |
the batch normalization layers.''' |
|
|
112 |
|
|
|
113 |
def __init__(self, |
|
|
114 |
filters, |
|
|
115 |
kernel_size=(3,3), |
|
|
116 |
strides=(1,1), |
|
|
117 |
trainable=True, |
|
|
118 |
name='encoder_block', |
|
|
119 |
**kwargs): |
|
|
120 |
|
|
|
121 |
super(EncoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
122 |
# When initializing this object receives a trainable parameter for |
|
|
123 |
# freezing the convolutional layers. |
|
|
124 |
|
|
|
125 |
# including the image normalization within the network for easier image |
|
|
126 |
# processing during inference |
|
|
127 |
self.image_normalization = layers.Rescaling(scale=1./255) |
|
|
128 |
|
|
|
129 |
# below creates the first of two convolutional layers |
|
|
130 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
131 |
kernel_size=kernel_size, |
|
|
132 |
strides=strides, |
|
|
133 |
padding='same', |
|
|
134 |
name='encoder_conv1', |
|
|
135 |
trainable=trainable) |
|
|
136 |
|
|
|
137 |
# second of two convolutional layers |
|
|
138 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
139 |
kernel_size=kernel_size, |
|
|
140 |
strides=strides, |
|
|
141 |
padding='same', |
|
|
142 |
name='encoder_conv2', |
|
|
143 |
trainable=trainable) |
|
|
144 |
|
|
|
145 |
# creates the max-pooling layer for downsampling the image. |
|
|
146 |
self.enc_pool = layers.MaxPool2D(pool_size=(2,2), |
|
|
147 |
strides=(2,2), |
|
|
148 |
padding='same', |
|
|
149 |
name='enc_pool') |
|
|
150 |
|
|
|
151 |
# ReLU layer for activations. |
|
|
152 |
self.ReLU = layers.ReLU() |
|
|
153 |
|
|
|
154 |
# both batch normalization layers for use with their corresponding |
|
|
155 |
# convolutional layers. |
|
|
156 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
157 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
158 |
|
|
|
159 |
def call(self,input,normalization=False,training=True,include_pool=True): |
|
|
160 |
|
|
|
161 |
# first conv of the encoder block |
|
|
162 |
if normalization: |
|
|
163 |
x = self.image_normalization(input) |
|
|
164 |
x = self.conv1(x) |
|
|
165 |
else: |
|
|
166 |
x = self.conv1(input) |
|
|
167 |
|
|
|
168 |
x = self.batch_norm1(x,training=training) |
|
|
169 |
x = self.ReLU(x) |
|
|
170 |
|
|
|
171 |
# second conv of the encoder block |
|
|
172 |
x = self.conv2(x) |
|
|
173 |
x = self.batch_norm2(x,training=training) |
|
|
174 |
x = self.ReLU(x) |
|
|
175 |
|
|
|
176 |
# calculate and include the max pooling layer if include_pool is true. |
|
|
177 |
# This output is used for the skip connections later in the network. |
|
|
178 |
if include_pool: |
|
|
179 |
pooled_x = self.enc_pool(x) |
|
|
180 |
return(x,pooled_x) |
|
|
181 |
|
|
|
182 |
else: |
|
|
183 |
return(x) |
|
|
184 |
|
|
|
185 |
|
|
|
186 |
# -------------------------------------------------- |
|
|
187 |
|
|
|
188 |
class DecoderBlock(layers.Layer): |
|
|
189 |
'''This function returns a decoder block that when called receives both an |
|
|
190 |
input and a "skip connection". The input is passed to the |
|
|
191 |
"up convolution" or transpose conv layer to double the dimensions before |
|
|
192 |
being concatenated with its associated skip connection from the encoder |
|
|
193 |
section of the network. All padding is set to "same" for cleanliness. |
|
|
194 |
The decoder block also has an option for including an additional |
|
|
195 |
"segmentation" layer, which is a (1,1) convolution with 4 filters, which |
|
|
196 |
produces the logits for the one-hot encoded ground truth. |
|
|
197 |
|
|
|
198 |
When initializing it receives the number of filters to be used in the |
|
|
199 |
up convolutional layer as well as the other two forward convolutions. |
|
|
200 |
The received kernel_size and stride is used for the forward convolutions, |
|
|
201 |
with the up convolution kernel and stride set to be (2,2).''' |
|
|
202 |
def __init__(self, |
|
|
203 |
filters, |
|
|
204 |
trainable=True, |
|
|
205 |
kernel_size=(3,3), |
|
|
206 |
strides=(1,1), |
|
|
207 |
name='DecoderBlock', |
|
|
208 |
**kwargs): |
|
|
209 |
|
|
|
210 |
super(DecoderBlock,self).__init__(trainable, name, **kwargs) |
|
|
211 |
|
|
|
212 |
# creating the up convolution layer |
|
|
213 |
self.up_conv = layers.Conv2DTranspose(filters=filters, |
|
|
214 |
kernel_size=(2,2), |
|
|
215 |
strides=(2,2), |
|
|
216 |
padding='same', |
|
|
217 |
name='decoder_upconv', |
|
|
218 |
trainable=trainable) |
|
|
219 |
|
|
|
220 |
# the first of two forward convolutional layers |
|
|
221 |
self.conv1 = layers.Conv2D(filters=filters, |
|
|
222 |
kernel_size=kernel_size, |
|
|
223 |
strides=strides, |
|
|
224 |
padding='same', |
|
|
225 |
name ='decoder_conv1', |
|
|
226 |
trainable=trainable) |
|
|
227 |
|
|
|
228 |
# second convolutional layer |
|
|
229 |
self.conv2 = layers.Conv2D(filters=filters, |
|
|
230 |
kernel_size=kernel_size, |
|
|
231 |
strides=strides, |
|
|
232 |
padding='same', |
|
|
233 |
name ='decoder_conv2', |
|
|
234 |
trainable=trainable) |
|
|
235 |
|
|
|
236 |
# this creates the output prediction logits layer. |
|
|
237 |
self.seg_out = layers.Conv2D(filters=6, |
|
|
238 |
kernel_size=(1,1), |
|
|
239 |
name='conv_feature_map') |
|
|
240 |
|
|
|
241 |
# ReLU for activation of all above layers |
|
|
242 |
self.ReLU = layers.ReLU() |
|
|
243 |
|
|
|
244 |
# the individual batch normalization layers for their respective |
|
|
245 |
# convolutional layers. |
|
|
246 |
self.batch_norm1 = tf.keras.layers.BatchNormalization() |
|
|
247 |
self.batch_norm2 = tf.keras.layers.BatchNormalization() |
|
|
248 |
|
|
|
249 |
|
|
|
250 |
def call(self,input,skip_conn,training=True,segmentation=False,prob_dist=True): |
|
|
251 |
|
|
|
252 |
up = self.up_conv(input) # perform image up convolution |
|
|
253 |
# concatenate the input and the skip_conn along the features axis |
|
|
254 |
concatenated = layers.concatenate([up,skip_conn],axis=-1) |
|
|
255 |
|
|
|
256 |
# first convolution |
|
|
257 |
x = self.conv1(concatenated) |
|
|
258 |
x = self.batch_norm1(x,training=training) |
|
|
259 |
x = self.ReLU(x) |
|
|
260 |
|
|
|
261 |
# second convolution |
|
|
262 |
x = self.conv2(x) |
|
|
263 |
x = self.batch_norm2(x,training=training) |
|
|
264 |
x = self.ReLU(x) |
|
|
265 |
|
|
|
266 |
# if segmentation is True, then run the segmentation (1,1) convolution |
|
|
267 |
# and use the Softmax to produce a probability distribution. |
|
|
268 |
if segmentation: |
|
|
269 |
seg = self.seg_out(x) |
|
|
270 |
# deliberately set as "float32" to ensure proper calculation if |
|
|
271 |
# switching to mixed precision for efficiency |
|
|
272 |
if prob_dist: |
|
|
273 |
seg = layers.Softmax(dtype='float32')(seg) |
|
|
274 |
|
|
|
275 |
return(seg) |
|
|
276 |
|
|
|
277 |
else: |
|
|
278 |
return(x) |
|
|
279 |
|
|
|
280 |
# -------------------------------------------------- |
|
|
281 |
|
|
|
282 |
class uNet(keras.Model): |
|
|
283 |
'''This is a sub-classed model that uses the encoder and decoder blocks |
|
|
284 |
defined above to create a custom unet. The differences from the original |
|
|
285 |
paper include a variable filter scalar (filter_multiplier), batch |
|
|
286 |
normalization between each convolutional layer and the associated ReLU |
|
|
287 |
activation, as well as feature normalization implemented in the first |
|
|
288 |
layer of the network.''' |
|
|
289 |
def __init__(self,filter_multiplier=2,**kwargs): |
|
|
290 |
super(uNet,self).__init__() |
|
|
291 |
|
|
|
292 |
# Defining encoder blocks |
|
|
293 |
self.encoder_block1 = EncoderBlock(filters=2*filter_multiplier, |
|
|
294 |
name='Enc1') |
|
|
295 |
self.encoder_block2 = EncoderBlock(filters=4*filter_multiplier, |
|
|
296 |
name='Enc2') |
|
|
297 |
self.encoder_block3 = EncoderBlock(filters=8*filter_multiplier, |
|
|
298 |
name='Enc3') |
|
|
299 |
self.encoder_block4 = EncoderBlock(filters=16*filter_multiplier, |
|
|
300 |
name='Enc4') |
|
|
301 |
self.encoder_block5 = EncoderBlock(filters=32*filter_multiplier, |
|
|
302 |
name='Enc5') |
|
|
303 |
|
|
|
304 |
# Defining decoder blocks. The names are in reverse order to make it |
|
|
305 |
# (hopefully) easier to understand which skip connections are associated |
|
|
306 |
# with which decoder layers. |
|
|
307 |
self.decoder_block4 = DecoderBlock(filters=16*filter_multiplier, |
|
|
308 |
name='Dec4') |
|
|
309 |
self.decoder_block3 = DecoderBlock(filters=8*filter_multiplier, |
|
|
310 |
name='Dec3') |
|
|
311 |
self.decoder_block2 = DecoderBlock(filters=4*filter_multiplier, |
|
|
312 |
name='Dec2') |
|
|
313 |
self.decoder_block1 = DecoderBlock(filters=2*filter_multiplier, |
|
|
314 |
name='Dec1') |
|
|
315 |
|
|
|
316 |
|
|
|
317 |
def call(self,inputs,training,predict=False,threshold=3): |
|
|
318 |
|
|
|
319 |
# encoder |
|
|
320 |
enc1,enc1_pool = self.encoder_block1(input=inputs,normalization=True,training=training) |
|
|
321 |
enc2,enc2_pool = self.encoder_block2(input=enc1_pool,training=training) |
|
|
322 |
enc3,enc3_pool = self.encoder_block3(input=enc2_pool,training=training) |
|
|
323 |
enc4,enc4_pool = self.encoder_block4(input=enc3_pool,training=training) |
|
|
324 |
enc5 = self.encoder_block5(input=enc4_pool, |
|
|
325 |
include_pool=False, |
|
|
326 |
training=training) |
|
|
327 |
|
|
|
328 |
|
|
|
329 |
|
|
|
330 |
# decoder |
|
|
331 |
dec4 = self.decoder_block4(input=enc5,skip_conn=enc4,training=training) |
|
|
332 |
dec3 = self.decoder_block3(input=dec4,skip_conn=enc3,training=training) |
|
|
333 |
dec2 = self.decoder_block2(input=dec3,skip_conn=enc2,training=training) |
|
|
334 |
prob_dist_out = self.decoder_block1(input=dec2, |
|
|
335 |
skip_conn=enc1, |
|
|
336 |
segmentation=True, |
|
|
337 |
training=training) |
|
|
338 |
if predict: |
|
|
339 |
seg_logits_out = self.decoder_block1(input=dec2, |
|
|
340 |
skip_conn=enc1, |
|
|
341 |
segmentation=True, |
|
|
342 |
training=training, |
|
|
343 |
prob_dist=False) |
|
|
344 |
|
|
|
345 |
# This prediction is included to allow one to seta threshold for the |
|
|
346 |
# uncertainty, deemed an arbitrary value that corresponds to the |
|
|
347 |
# maximum value of the logits predicted at a specific point in the |
|
|
348 |
# image. It only includes predictions for the vascular and neural |
|
|
349 |
# tissues if they are above the confidence threshold, if they are below |
|
|
350 |
# the threshold the predictions are defaulted to muscle, connective, |
|
|
351 |
# or background. |
|
|
352 |
|
|
|
353 |
if predict: |
|
|
354 |
# rename the value for consistency and write protection. |
|
|
355 |
y_pred = seg_logits_out |
|
|
356 |
pred_shape = (1,1024,1024,6) |
|
|
357 |
# Getting an image-sized preliminary segmentation prediction |
|
|
358 |
squeezed_prediction = tf.squeeze(tf.argmax(y_pred,axis=-1)) |
|
|
359 |
|
|
|
360 |
# initializing the variable used for storing the maximum logits at |
|
|
361 |
# each pixel location. |
|
|
362 |
max_value_predictions = tf.zeros((1024,1024)) |
|
|
363 |
|
|
|
364 |
# cycle through all the classes |
|
|
365 |
for idx in range(6): |
|
|
366 |
|
|
|
367 |
# current class logits |
|
|
368 |
current_slice = tf.squeeze(y_pred[:,:,:,idx]) |
|
|
369 |
# find the locations where this class is predicted |
|
|
370 |
current_indices = squeezed_prediction == idx |
|
|
371 |
# define the shape so that this function can run in graph mode |
|
|
372 |
# and not need eager execution. |
|
|
373 |
current_indices.set_shape((1024,1024)) |
|
|
374 |
# Get the indices of where the idx class is predicted |
|
|
375 |
indices = tf.where(squeezed_prediction == idx) |
|
|
376 |
# get the output of boolean_mask to enable scatter update of the |
|
|
377 |
# tensor. This is required because tensors do not support |
|
|
378 |
# mask indexing. |
|
|
379 |
values_updates = tf.boolean_mask(current_slice,current_indices).astype(tf.double) |
|
|
380 |
# Place the maximum logit values at each point in an |
|
|
381 |
# image-size matrix, indicating the confidence in the prediction |
|
|
382 |
# at each pixel. |
|
|
383 |
max_value_predictions = tf.tensor_scatter_nd_update(max_value_predictions,indices,values_updates.astype(tf.float32)) |
|
|
384 |
|
|
|
385 |
for idx in [3,4]: |
|
|
386 |
mask_list = [] |
|
|
387 |
for idx2 in range(6): |
|
|
388 |
if idx2 == idx: |
|
|
389 |
|
|
|
390 |
|
|
|
391 |
if idx2 == 4: |
|
|
392 |
threshold = threshold - 1 |
|
|
393 |
|
|
|
394 |
|
|
|
395 |
mid_mask = max_value_predictions<threshold |
|
|
396 |
mask_list.append(mid_mask.astype(tf.float32)) |
|
|
397 |
else: |
|
|
398 |
mask_list.append(tf.zeros((1024,1024))) |
|
|
399 |
|
|
|
400 |
mask = tf.expand_dims(tf.stack(mask_list,axis=-1),axis=0) |
|
|
401 |
|
|
|
402 |
indexes = tf.where(mask) |
|
|
403 |
values_updates = tf.boolean_mask(tf.zeros(pred_shape),mask).astype(tf.double) |
|
|
404 |
|
|
|
405 |
seg_logits_out = tf.tensor_scatter_nd_update(seg_logits_out,indexes,values_updates.astype(tf.float32)) |
|
|
406 |
prob_dist_out = layers.Softmax(dtype='float32')(seg_logits_out) |
|
|
407 |
|
|
|
408 |
|
|
|
409 |
|
|
|
410 |
return(prob_dist_out) |
|
|
411 |
|
|
|
412 |
|
|
|
413 |
# -------------------------------------------------- |
|
|
414 |
|
|
|
415 |
def get_image_blocks(image,tile_distance=512,tile_size=1024): |
|
|
416 |
'''Receives an image as well as a minimum distance between tiles. |
|
|
417 |
Returns the name of the image processed, the image dimensions, and a list |
|
|
418 |
of tile centers evenly distributed across the tissue surface.''' |
|
|
419 |
image_dimensions = image.shape |
|
|
420 |
|
|
|
421 |
safe_mask = np.zeros([image_dimensions[0],image_dimensions[1]]) |
|
|
422 |
safe_mask[int(tile_size/2):image_dimensions[0]-int(tile_size/2), |
|
|
423 |
int(tile_size/2):image_dimensions[1]-int(tile_size/2)] = 1 |
|
|
424 |
|
|
|
425 |
grid_0 = np.arange(0,image_dimensions[0],tile_distance) |
|
|
426 |
grid_1 = np.arange(0,image_dimensions[1],tile_distance) |
|
|
427 |
|
|
|
428 |
|
|
|
429 |
|
|
|
430 |
center_indexes = [] |
|
|
431 |
|
|
|
432 |
for grid0 in grid_0: |
|
|
433 |
for grid1 in grid_1: |
|
|
434 |
if safe_mask[grid0,grid1]: |
|
|
435 |
center_indexes.append([grid0,grid1]) |
|
|
436 |
|
|
|
437 |
return([image_dimensions,center_indexes]) |
|
|
438 |
|
|
|
439 |
# -------------------------------------------------- |
|
|
440 |
|
|
|
441 |
def get_reduced_tile_indexes(tile_center,returned_size=1024): |
|
|
442 |
start_0 = int(tile_center[0] - returned_size/2) |
|
|
443 |
end_0 = int(tile_center[0] + returned_size/2) |
|
|
444 |
|
|
|
445 |
start_1 = int(tile_center[1] - returned_size/2) |
|
|
446 |
end_1 = int(tile_center[1] + returned_size/2) |
|
|
447 |
|
|
|
448 |
return([start_0,end_0],[start_1,end_1]) |
|
|
449 |
|
|
|
450 |
# -------------------------------------------------- |
|
|
451 |
|
|
|
452 |
def segment_tiles(unet,center_indexes,image,threshold=3,scaling_factor=1,tile_size=1024): |
|
|
453 |
|
|
|
454 |
m,n,z = image.shape |
|
|
455 |
segmentation = np.zeros((m,n)) |
|
|
456 |
|
|
|
457 |
for idx in tqdm.tqdm(range(len(center_indexes))): |
|
|
458 |
center = center_indexes[idx] |
|
|
459 |
dim0, dim1 = get_reduced_tile_indexes(center,tile_size) |
|
|
460 |
sub_sectioned_tile = image[dim0[0]:dim0[1],dim1[0]:dim1[1]] |
|
|
461 |
|
|
|
462 |
full_tile_dim0,full_tile_dim1,z = sub_sectioned_tile.shape |
|
|
463 |
|
|
|
464 |
color_tile = sub_sectioned_tile[:,:,0:3] |
|
|
465 |
|
|
|
466 |
if scaling_factor > 1: |
|
|
467 |
height = color_tile.shape[0] |
|
|
468 |
width = color_tile.shape[1] |
|
|
469 |
|
|
|
470 |
height2 = int(height/scaling_factor) |
|
|
471 |
width2 = int(width/scaling_factor) |
|
|
472 |
|
|
|
473 |
color_tile = cv.resize(color_tile,[height2,width2],cv.INTER_AREA) |
|
|
474 |
|
|
|
475 |
color_tile = color_tile[None,:,:,:] |
|
|
476 |
|
|
|
477 |
prediction = unet(color_tile,predict=True,threshold=threshold) |
|
|
478 |
|
|
|
479 |
prediction_tile = np.squeeze(np.asarray(tf.argmax(prediction,axis=-1)).astype(np.float32).copy()) |
|
|
480 |
|
|
|
481 |
if scaling_factor > 1: |
|
|
482 |
prediction_tile = cv.resize(prediction_tile,[full_tile_dim0,full_tile_dim1],cv.INTER_NEAREST) |
|
|
483 |
|
|
|
484 |
|
|
|
485 |
dim0, dim1 = get_reduced_tile_indexes(center,returned_size=512) |
|
|
486 |
|
|
|
487 |
# fix this hard coding of the tile indexes for the prediction |
|
|
488 |
segmentation[dim0[0]:dim0[1],dim1[0]:dim1[1]] = prediction_tile[256:768,256:768] |
|
|
489 |
|
|
|
490 |
return(segmentation) |
|
|
491 |
|
|
|
492 |
# -------------------------------------------------- |
|
|
493 |
|
|
|
494 |
def segment_directory(JPG_directory, |
|
|
495 |
unet,tile_size=2048, |
|
|
496 |
tile_distance=512, |
|
|
497 |
scaling_factor=2, |
|
|
498 |
HeartID='0', |
|
|
499 |
threshold=3, |
|
|
500 |
): |
|
|
501 |
os.chdir(JPG_directory) |
|
|
502 |
|
|
|
503 |
out_directory = f'./../{HeartID}_uNet_Segmentations/' |
|
|
504 |
|
|
|
505 |
# create the directory for saving if it doesn't already exist |
|
|
506 |
if not os.path.isdir(out_directory): |
|
|
507 |
os.mkdir(out_directory) |
|
|
508 |
|
|
|
509 |
os.chdir(out_directory) |
|
|
510 |
|
|
|
511 |
file_names = tf.io.gfile.glob(JPG_directory + HeartID + '*.jpg') |
|
|
512 |
|
|
|
513 |
for idx,file in enumerate(file_names): |
|
|
514 |
print(f'segmenting file {idx} of {len(file_names)}') |
|
|
515 |
|
|
|
516 |
file_id = file.split('/')[-1].split('.')[0] |
|
|
517 |
|
|
|
518 |
image = cv.imread(file,cv.IMREAD_UNCHANGED) |
|
|
519 |
image = cv.copyMakeBorder(image,4000,4000,4000,4000,cv.BORDER_REPLICATE) |
|
|
520 |
|
|
|
521 |
dimensions,center_indexes = get_image_blocks(image, |
|
|
522 |
tile_distance=tile_distance, |
|
|
523 |
tile_size=tile_size |
|
|
524 |
) |
|
|
525 |
try: |
|
|
526 |
|
|
|
527 |
segmentation = segment_tiles(unet, |
|
|
528 |
center_indexes, |
|
|
529 |
image, |
|
|
530 |
threshold=threshold, |
|
|
531 |
scaling_factor=scaling_factor, |
|
|
532 |
tile_size=tile_size) |
|
|
533 |
|
|
|
534 |
except Exception as e: |
|
|
535 |
print(file) |
|
|
536 |
|
|
|
537 |
cv.imwrite( |
|
|
538 |
file_id + |
|
|
539 |
f'_uNetSegmentation.png', |
|
|
540 |
segmentation |
|
|
541 |
) |
|
|
542 |
|
|
|
543 |
return() |
|
|
544 |
|
|
|
545 |
|
|
|
546 |
# -------------------------------------------------- |
|
|
547 |
# -------------------------------------------------- |
|
|
548 |
|
|
|
549 |
|
|
|
550 |
def main() -> None: |
|
|
551 |
""" Main function for segmenting the provided directory with the given |
|
|
552 |
uNet weights. """ |
|
|
553 |
|
|
|
554 |
args = get_args() |
|
|
555 |
uNet_file = args.uNet_weights |
|
|
556 |
JPG_directory = args.jpg_directory |
|
|
557 |
HeartID = args.heart_id |
|
|
558 |
GPU_ID = args.GPU_id |
|
|
559 |
threshold = args.threshold |
|
|
560 |
tile_size = 1024 |
|
|
561 |
|
|
|
562 |
os.environ["CUDA_VISIBLE_DEVICES"]=GPU_ID |
|
|
563 |
gpus = tf.config.list_physical_devices('GPU') |
|
|
564 |
|
|
|
565 |
if gpus: |
|
|
566 |
# Restrict TensorFlow to only allocate 8GB of memory on the first GPU |
|
|
567 |
try: |
|
|
568 |
tf.config.set_logical_device_configuration( |
|
|
569 |
gpus[0], |
|
|
570 |
[tf.config.LogicalDeviceConfiguration(memory_limit=8000)]) |
|
|
571 |
logical_gpus = tf.config.list_logical_devices('GPU') |
|
|
572 |
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") |
|
|
573 |
except RuntimeError as e: |
|
|
574 |
# Virtual devices must be set before GPUs have been initialized |
|
|
575 |
print(e) |
|
|
576 |
|
|
|
577 |
sample_data = np.zeros((1,1024,1024,3)).astype(np.int8) |
|
|
578 |
unet = uNet(filter_multiplier=12) |
|
|
579 |
_ = unet(sample_data) |
|
|
580 |
unet.summary() |
|
|
581 |
|
|
|
582 |
unet.load_weights(uNet_file) |
|
|
583 |
|
|
|
584 |
segment_directory(JPG_directory, |
|
|
585 |
unet, |
|
|
586 |
tile_size=tile_size, |
|
|
587 |
tile_distance=512, |
|
|
588 |
scaling_factor=1, |
|
|
589 |
HeartID=HeartID, |
|
|
590 |
threshold=3, |
|
|
591 |
) |
|
|
592 |
|
|
|
593 |
|
|
|
594 |
# -------------------------------------------------- |
|
|
595 |
if __name__ == '__main__': |
|
|
596 |
main() |