Diff of /evaluateMBIMDS.m [000000] .. [be1edc]

Switch to unified view

a b/evaluateMBIMDS.m
1
function [t_pred, score, y_target] = evaluateMBIMDS(network,imds)
2
3
%%
4
% To be run on the following networks:
5
% network = '1024x1024_34_true_5_class_prostate.onnx'
6
% network = '1024x1024_50_true_5_class_prostate.onnx'
7
% network = '1024x1024_152_true_5_class_prostate.onnx'
8
%%
9
% Use michaels original test set for 1024 images
10
% imds = imageDatastore('ABSOLUTE_PATH','IncludeSubfolders',true,'labelsource','foldernames');
11
% Absolute path should be the top level folder containing folders that
12
% seperate classes
13
%%
14
% For ease of use, set code directory as available path and run each
15
% network in its own network folder. This will ensure the saves are
16
% appropriately placed.
17
18
warning off
19
net = importONNXNetwork(network,'OutputLayerType','classification');
20
warning on
21
22
imdsT = transform(imds,@(x) preNetNorm(x));
23
24
[t_pred, score] = classify(net,imdsT);
25
26
y_target = imdsT.UnderlyingDatastores{1,1}.Labels;
27
28
csvwrite(sprintf('%s_prediction.csv',network(1:end-5)),grp2idx(t_pred));
29
csvwrite(sprintf('%s_score.csv',network(1:end-5)),score);
30
csvwrite(sprintf('%s_target.csv',network(1:end-5)),grp2idx(y_target));