[3f3595]: / usage / usage.py

Download this file

139 lines (110 with data), 5.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import time
import glob
import sys
import numpy as np
import openslide
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from mpl_toolkits.axes_grid1 import make_axes_locatable
import cv2
kernel = np.ones((5,5), np.uint8)
from PIL import Image
sys.path.append('..')
from DigiPathAI.Segmentation import getSegmentation
digestpath_imgs = ['../examples/colon-cancer-1.tiff']
paip_imgs = ['../examples/examples/tcga/liver-1.svs']
tcga_imgs = ['../examples/examples/tcga/TCGA-CM.svs']
camelyon_imgs = ['../examples/Camelyon_16_Test_samples/camelyon-1.tif']
models = ['dense', 'inception', 'deeplabv3', 'ensemble', 'epistemic']
def iou(gt, mask):
gt = np.uint8(np.array(gt>0.1))
mask = np.uint8(np.array(mask>0.1))
nr = np.sum(gt*mask)*2.0
dr = np.sum(gt + mask)*1.0
return nr/dr
for path in tcga_imgs:
ext = os.path.splitext(path)[1]
base_path = os.path.splitext(path)[0]
print (ext, base_path, base_path[:-5])
quick = True
tta_list = ['FLIP_LEFT_RIGHT', 'ROTATE_90'] #, 'ROTATE_180', 'ROTATE_270']
for model in models:
print (model, quick, path, "======================================")
if model == 'ensemble':
quick = False
elif model == 'epistemic':
quick = False
tta_list = None
"""
getSegmentation(path,
patch_size = 512,
stride_size = 512,
batch_size = 4,
quick = quick,
tta_list = tta_list,
crf = False,
mask_path = base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff',
uncertainty_path = base_path + '-DigiPathAI_{}_uncertainty'.format(model)+ '.tiff',
status = None,
mask_level = 4,
model = model,
mode = 'breast')
"""
slide = openslide.OpenSlide(path)
level = len(slide.level_dimensions) - 1
img_dimensions = slide.level_dimensions[-1]
img = np.array(slide.read_region((0,0), level, img_dimensions).convert('RGB'))
mask = openslide.OpenSlide(base_path + '-DigiPathAI_{}_mask'.format(model) + '.tiff')
level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in mask.level_dimensions])[0]
mask = np.array(mask.read_region((0,0), level, img_dimensions).convert('L'))
mask = cv2.dilate(mask, kernel, iterations=2)
uncertainty = openslide.OpenSlide(base_path + '-DigiPathAI_{}_uncertainty'.format(model) + '.tiff')
level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in uncertainty.level_dimensions])[0]
uncertainty = np.array(uncertainty.read_region((0,0), level, img_dimensions).convert('L'))
gt = openslide.OpenSlide(glob.glob(base_path + '-gt*')[0])
level = np.where([1 if ((dim[0] == img_dimensions[0])*(dim[1] == img_dimensions[1])) else 0 for dim in gt.level_dimensions])[0]
gt = np.array(gt.read_region((0,0), level, img_dimensions).convert('L'))*255
gt = np.array(Image.fromarray(gt).resize(img_dimensions, Image.NEAREST))
mask = np.array(Image.fromarray(mask).resize(img_dimensions, Image.NEAREST))
uncertainty = np.array(Image.fromarray(uncertainty).resize(img_dimensions))/255.0
# gt = np.array(Image.open(base_path + 'gt.jpg').convert('L').resize(img_dimensions))
print ("path: {}, model: {}, IoU: {}".format(path, model, iou(gt, mask)))
fig, ax = plt.subplots(1, 4, figsize=(10, 40))
im_ = ax[0].imshow(img)
ax[0].set_xticklabels([])
ax[0].set_yticklabels([])
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[0].set_aspect('equal')
ax[0].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
im_ = ax[1].imshow(img)
gt_ = ax[1].imshow(gt, alpha = 0.5, cmap='gray')
ax[1].set_xticklabels([])
ax[1].set_yticklabels([])
ax[1].set_xticks([])
ax[1].set_yticks([])
ax[1].set_aspect('equal')
ax[1].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
im_ = ax[2].imshow(img)
mask_ = ax[2].imshow(mask, alpha = 0.5, cmap='gray')
ax[2].set_xticklabels([])
ax[2].set_yticklabels([])
ax[2].set_xticks([])
ax[2].set_yticks([])
ax[2].set_aspect('equal')
ax[2].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
im_ = ax[3].imshow(img)
uncertain_ = ax[3].imshow(uncertainty, alpha = 0.5, cmap=plt.cm.RdBu_r)
ax[3].set_xticklabels([])
ax[3].set_yticklabels([])
ax[3].set_xticks([])
ax[3].set_yticks([])
ax[3].set_aspect('equal')
ax[3].tick_params(bottom='off', top='off', labelbottom='off', right='off', left='off', labelleft='off' )
cax = fig.add_axes([ax[3].get_position().x1 + 0.01,
ax[3].get_position().y0,
0.01,
ax[3].get_position().y1-ax[3].get_position().y0])
fig.colorbar(uncertain_, cax=cax)
plt.savefig(base_path+'DigiPath_Results_{}.png'.format(model), bbox_inches='tight')