[5bd30d]: / DigiPathAI / new_Segmentation.py

Download this file

688 lines (591 with data), 27.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from datetime import datetime
import os
import glob
import random
import imgaug
from imgaug import augmenters as iaa
from PIL import Image
from tqdm import tqdm
import matplotlib.pyplot as plt
import openslide
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, BatchNormalization, Conv2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, concatenate, Concatenate, UpSampling2D, Activation
from tensorflow.keras.losses import categorical_crossentropy
from tensorflow.keras.applications.densenet import DenseNet121
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint, LearningRateScheduler, TensorBoard
from tensorflow.keras import metrics
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms # noqa
import sklearn.metrics
import io
import itertools
from six.moves import range
import time
import argparse
import cv2
from skimage.color import rgb2hsv
from skimage.filters import threshold_otsu
import sys
sys.path.append(os.path.dirname(os.path.abspath(os.getcwd())))
from models.seg_models import get_inception_resnet_v2_unet_softmax, unet_densenet121
from models.deeplabv3p_original import Deeplabv3
# Random Seeds
np.random.seed(0)
random.seed(0)
tf.set_random_seed(0)
import gc
import pandas as pd
import tifffile
import skimage.io as io
import DigiPathAI
# Image Helper Functions
def imsave(*args, **kwargs):
"""
Concatenate the images given in args and saves them as a single image in the specified output destination.
Images should be numpy arrays and have same dimensions along the 0 axis.
imsave(im1,im2,out="sample.png")
"""
args_list = list(args)
for i in range(len(args_list)):
if type(args_list[i]) != np.ndarray:
print("Not a numpy array")
return 0
if len(args_list[i].shape) == 2:
args_list[i] = np.dstack([args_list[i]]*3)
if args_list[i].max() == 1:
args_list[i] = args_list[i]*255
out_destination = kwargs.get("out",'')
try:
concatenated_arr = np.concatenate(args_list,axis=1)
im = Image.fromarray(np.uint8(concatenated_arr))
except Exception as e:
print(e)
import ipdb; ipdb.set_trace()
return 0
if out_destination:
print("Saving to %s"%(out_destination))
im.save(out_destination)
else:
return im
def imshow(*args,**kwargs):
""" Handy function to show multiple plots in on row, possibly with different cmaps and titles
Usage:
imshow(img1, title="myPlot")
imshow(img1,img2, title=['title1','title2'])
imshow(img1,img2, cmap='hot')
imshow(img1,img2,cmap=['gray','Blues']) """
cmap = kwargs.get('cmap', 'gray')
title= kwargs.get('title','')
axis_off = kwargs.get('axis_off','')
if len(args)==0:
raise ValueError("No images given to imshow")
elif len(args)==1:
plt.title(title)
plt.imshow(args[0], interpolation='none')
else:
n=len(args)
if type(cmap)==str:
cmap = [cmap]*n
if type(title)==str:
title= [title]*n
plt.figure(figsize=(n*5,10))
for i in range(n):
plt.subplot(1,n,i+1)
plt.title(title[i])
plt.imshow(args[i], cmap[i])
if axis_off:
plt.axis('off')
plt.show()
def normalize_minmax(data):
"""
Normalize contrast across volume
"""
_min = np.float(np.min(data))
_max = np.float(np.max(data))
if (_max-_min)!=0:
img = (data - _min) / (_max-_min)
else:
img = np.zeros_like(data)
return img
# Functions
def BinMorphoProcessMask(mask,level):
"""
Binary operation performed on tissue mask
"""
close_kernel = np.ones((20, 20), dtype=np.uint8)
image_close = cv2.morphologyEx(np.array(mask), cv2.MORPH_CLOSE, close_kernel)
open_kernel = np.ones((5, 5), dtype=np.uint8)
image_open = cv2.morphologyEx(np.array(image_close), cv2.MORPH_OPEN, open_kernel)
if level == 2:
kernel = np.ones((60, 60), dtype=np.uint8)
elif level == 3:
kernel = np.ones((35, 35), dtype=np.uint8)
else:
raise ValueError
image = cv2.dilate(image_open,kernel,iterations = 1)
return image
def get_bbox(cont_img, rgb_image=None):
temp_img = np.uint8(cont_img.copy())
_,contours, _ = cv2.findContours(temp_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
rgb_contour = None
if rgb_image is not None:
rgb_contour = rgb_image.copy()
line_color = (0, 0, 255) # blue color code
cv2.drawContours(rgb_contour, contours, -1, line_color, 2)
bounding_boxes = [cv2.boundingRect(c) for c in contours]
for x, y, h, w in bounding_boxes:
rgb_contour = cv2.rectangle(rgb_contour,(x,y),(x+h,y+w),(0,255,0),2)
return bounding_boxes, rgb_contour
def get_all_bbox_masks(mask, stride_factor):
"""
Find the bbox and corresponding masks
"""
bbox_mask = np.zeros_like(mask)
bounding_boxes, _ = get_bbox(mask)
y_size, x_size = bbox_mask.shape
for x, y, h, w in bounding_boxes:
x_min = x - stride_factor
x_max = x + h + stride_factor
y_min = y - stride_factor
y_max = y + w + stride_factor
if x_min < 0:
x_min = 0
if y_min < 0:
y_min = 0
if x_max > x_size:
x_max = x_size - 1
if y_max > y_size:
y_max = y_size - 1
bbox_mask[y_min:y_max, x_min:x_max]=1
return bbox_mask
def get_all_bbox_masks_with_stride(mask, stride_factor):
"""
Find the bbox and corresponding masks
"""
bbox_mask = np.zeros_like(mask)
bounding_boxes, _ = get_bbox(mask)
y_size, x_size = bbox_mask.shape
for x, y, h, w in bounding_boxes:
x_min = x - stride_factor
x_max = x + h + stride_factor
y_min = y - stride_factor
y_max = y + w + stride_factor
if x_min < 0:
x_min = 0
if y_min < 0:
y_min = 0
if x_max > x_size:
x_max = x_size - 1
if y_max > y_size:
y_max = y_size - 1
bbox_mask[y_min:y_max:stride_factor, x_min:x_max:stride_factor]=1
return bbox_mask
def find_largest_bbox(mask, stride_factor):
"""
Find the largest bounding box encompassing all the blobs
"""
y_size, x_size = mask.shape
x, y = np.where(mask==1)
bbox_mask = np.zeros_like(mask)
x_min = np.min(x) - stride_factor
x_max = np.max(x) + stride_factor
y_min = np.min(y) - stride_factor
y_max = np.max(y) + stride_factor
if x_min < 0:
x_min = 0
if y_min < 0:
y_min = 0
if x_max > x_size:
x_max = x_size - 1
if y_min > y_size:
y_max = y_size - 1
bbox_mask[x_min:x_max, y_min:y_max]=1
return bbox_mask
def TissueMaskGeneration(slide_obj, level, RGB_min=50):
img_RGB = slide_obj.read_region((0, 0),level,slide_obj.level_dimensions[level])
img_RGB = np.transpose(np.array(img_RGB.convert('RGB')),axes=[1,0,2])
img_HSV = rgb2hsv(img_RGB)
background_R = img_RGB[:, :, 0] > threshold_otsu(img_RGB[:, :, 0])
background_G = img_RGB[:, :, 1] > threshold_otsu(img_RGB[:, :, 1])
background_B = img_RGB[:, :, 2] > threshold_otsu(img_RGB[:, :, 2])
tissue_RGB = np.logical_not(background_R & background_G & background_B)
tissue_S = img_HSV[:, :, 1] > threshold_otsu(img_HSV[:, :, 1])
min_R = img_RGB[:, :, 0] > RGB_min
min_G = img_RGB[:, :, 1] > RGB_min
min_B = img_RGB[:, :, 2] > RGB_min
tissue_mask = tissue_S & tissue_RGB & min_R & min_G & min_B
# r = img_RGB[:,:,0] < 235
# g = img_RGB[:,:,1] < 210
# b = img_RGB[:,:,2] < 235
# tissue_mask = np.logical_or(r,np.logical_or(g,b))
return tissue_mask
def TissueMaskGenerationPatch(patchRGB):
'''
Returns mask of tissue that obeys the threshold set by paip
'''
r = patchRGB[:,:,0] < 235
g = patchRGB[:,:,1] < 210
b = patchRGB[:,:,2] < 235
tissue_mask = np.logical_or(r,np.logical_or(g,b))
return tissue_mask
def TissueMaskGeneration_BIN(slide_obj, level):
img_RGB = np.transpose(np.array(slide_obj.read_region((0, 0),
level,
slide_obj.level_dimensions[level]).convert('RGB')),
axes=[1, 0, 2])
img_HSV = cv2.cvtColor(img_RGB, cv2.COLOR_BGR2HSV)
img_S = img_HSV[:, :, 1]
_,tissue_mask = cv2.threshold(img_S, 0, 255, cv2.THRESH_BINARY)
return np.array(tissue_mask)
def TissueMaskGeneration_BIN_OTSU(slide_obj, level):
img_RGB = np.transpose(np.array(slide_obj.read_region((0, 0),
level,
slide_obj.level_dimensions[level]).convert('RGB')),
axes=[1, 0, 2])
img_HSV = cv2.cvtColor(img_RGB, cv2.COLOR_BGR2HSV)
img_S = img_HSV[:, :, 1]
_,tissue_mask = cv2.threshold(img_S, 0, 255, cv2.THRESH_BINARY+cv2.THRESH_OTSU)
return np.array(tissue_mask)
def labelthreshold(image, threshold=0.5):
np.place(image,image>=threshold, 1)
np.place(image,image<threshold, 0)
return np.uint8(image)
def calc_jacc_score(x,y,smoothing=1):
for var in [x,y]:
np.place(var,var==255,1)
numerator = np.sum(x*y)
denominator = np.sum(np.logical_or(x,y))
return (numerator+smoothing)/(denominator+smoothing)
# DataLoader Implementation
class WSIStridedPatchDataset(Dataset):
"""
Data producer that generate all the square grids, e.g. 3x3, of patches,
from a WSI and its tissue mask, and their corresponding indices with
respect to the tissue mask
"""
def __init__(self, wsi_path, mask_path, label_path=None, image_size=256,
normalize=True, flip='NONE', rotate='NONE',
level=5, sampling_stride=16, roi_masking=True):
"""
Initialize the data producer.
Arguments:
wsi_path: string, path to WSI file
mask_path: string, path to mask file in numpy format OR None
label_mask_path: string, path to ground-truth label mask path in tif file or
None (incase of Normal WSI or test-time)
image_size: int, size of the image before splitting into grid, e.g. 768
patch_size: int, size of the patch, e.g. 256
crop_size: int, size of the final crop that is feed into a CNN,
e.g. 224 for ResNet
normalize: bool, if normalize the [0, 255] pixel values to [-1, 1],
mostly False for debuging purpose
flip: string, 'NONE' or 'FLIP_LEFT_RIGHT' indicating the flip type
rotate: string, 'NONE' or 'ROTATE_90' or 'ROTATE_180' or
'ROTATE_270', indicating the rotate type
level: Level to extract the WSI tissue mask
roi_masking: True: Multiplies the strided WSI with tissue mask to eliminate white spaces,
False: Ensures inference is done on the entire WSI
sampling_stride: Number of pixels to skip in the tissue mask, basically it's the overlap
fraction when patches are extracted from WSI during inference.
stride=1 -> consecutive pixels are utilized
stride= image_size/pow(2, level) -> non-overalaping patches
"""
self._wsi_path = wsi_path
self._mask_path = mask_path
self._label_path = label_path
self._image_size = image_size
self._normalize = normalize
self._flip = flip
self._rotate = rotate
self._level = level
self._sampling_stride = sampling_stride
self._roi_masking = roi_masking
self._preprocess()
def _preprocess(self):
self._slide = openslide.OpenSlide(self._wsi_path)
if self._label_path is not None:
self._label_slide = openslide.OpenSlide(self._label_path)
X_slide, Y_slide = self._slide.level_dimensions[0]
print("Image dimensions: (%d,%d)" %(X_slide,Y_slide))
factor = self._sampling_stride
if self._mask_path is not None:
mask_file_name = os.path.basename(self._mask_path)
if mask_file_name.endswith('.tiff'):
mask_obj = openslide.OpenSlide(self._mask_path)
self._mask = np.array(mask_obj.read_region((0, 0),
self._level,
mask_obj.level_dimensions[self._level]).convert('L')).T
np.place(self._mask,self._mask>0,255)
else:
# Generate tissue mask on the fly
self._mask = TissueMaskGeneration(self._slide, self._level)
# morphological operations ensure the holes are filled in tissue mask
# and minor points are aggregated to form a larger chunk
self._mask = BinMorphoProcessMask(np.uint8(self._mask),self._level)
# self._all_bbox_mask = get_all_bbox_masks(self._mask, factor)
# self._largest_bbox_mask = find_largest_bbox(self._mask, factor)
# self._all_strided_bbox_mask = get_all_bbox_masks_with_stride(self._mask, factor)
X_mask, Y_mask = self._mask.shape
# print (self._mask.shape, np.where(self._mask>0))
# imshow(self._mask.T)
# cm17 dataset had issues with images being power's of 2 precisely
# if X_slide != X_mask or Y_slide != Y_mask:
print('Mask (%d,%d) and Slide(%d,%d) '%(X_mask,Y_mask,X_slide,Y_slide))
if X_slide // X_mask != Y_slide // Y_mask:
raise Exception('Slide/Mask dimension does not match ,'
' X_slide / X_mask : {} / {},'
' Y_slide / Y_mask : {} / {}'
.format(X_slide, X_mask, Y_slide, Y_mask))
self._resolution = np.round(X_slide * 1.0 / X_mask)
if not np.log2(self._resolution).is_integer():
raise Exception('Resolution (X_slide / X_mask) is not power of 2 :'
' {}'.format(self._resolution))
# all the idces for tissue region from the tissue mask
self._strided_mask = np.ones_like(self._mask)
ones_mask = np.zeros_like(self._mask)
ones_mask[::factor, ::factor] = self._strided_mask[::factor, ::factor]
if self._roi_masking:
self._strided_mask = ones_mask*self._mask
# self._strided_mask = ones_mask*self._largest_bbox_mask
# self._strided_mask = ones_mask*self._all_bbox_mask
# self._strided_mask = self._all_strided_bbox_mask
else:
self._strided_mask = ones_mask
# print (np.count_nonzero(self._strided_mask), np.count_nonzero(self._mask[::factor, ::factor]))
# imshow(self._strided_mask.T, self._mask[::factor, ::factor].T)
# imshow(self._mask.T, self._strided_mask.T)
self._X_idcs, self._Y_idcs = np.where(self._strided_mask)
self._idcs_num = len(self._X_idcs)
def __len__(self):
return self._idcs_num
def save_scaled_imgs(self):
scld_dms = self._slide.level_dimensions[self._level]
self._slide_scaled = self._slide.read_region((0,0),self._level,scld_dms)
if self._label_path is not None:
self._label_scaled = np.array(self._label_slide.read_region((0,0),4,scld_dms).convert('L'))
np.place(self._label_scaled,self._label_scaled>0,255)
def save_get_mask(self, save_path):
np.save(save_path, self._mask)
def get_mask(self):
return self._mask
def get_strided_mask(self):
return self._strided_mask
def __getitem__(self, idx):
x_coord, y_coord = self._X_idcs[idx], self._Y_idcs[idx]
x_max_dim,y_max_dim = self._slide.level_dimensions[0]
# x = int(x_coord * self._resolution)
# y = int(y_coord * self._resolution)
x = int(x_coord * self._resolution - self._image_size//2)
y = int(y_coord * self._resolution - self._image_size//2)
# x = int(x_coord * self._resolution)
# y = int(y_coord * self._resolution)
#If Image goes out of bounds
if x>(x_max_dim - image_size):
x = x_max_dim - image_size
elif x<0:
x = 0
if y>(y_max_dim - image_size):
y = y_max_dim - image_size
elif y<0:
y = 0
#Converting pil image to np array transposes the w and h
img = np.transpose(self._slide.read_region(
(x, y), 0, (self._image_size, self._image_size)).convert('RGB'),[1,0,2])
if self._label_path is not None:
label_img = self._label_slide.read_region(
(x, y), 0, (self._image_size, self._image_size)).convert('L')
else:
#print('No label img')
label_img = Image.fromarray(np.zeros((self._image_size, self._image_size), dtype=np.uint8))
if self._flip == 'FLIP_LEFT_RIGHT':
img = img.transpose(Image.FLIP_LEFT_RIGHT)
label_img = label_img.transpose(Image.FLIP_LEFT_RIGHT)
if self._rotate == 'ROTATE_90':
img = img.transpose(Image.ROTATE_90)
label_img = label_img.transpose(Image.ROTATE_90)
if self._rotate == 'ROTATE_180':
img = img.transpose(Image.ROTATE_180)
label_img = label_img.transpose(Image.ROTATE_180)
if self._rotate == 'ROTATE_270':
img = img.transpose(Image.ROTATE_270)
label_img = label_img.transpose(Image.ROTATE_270)
# PIL image: H x W x C
img = np.array(img, dtype=np.float32)
label_img = np.array(label_img, dtype=np.uint8)
np.place(label_img, label_img>0, 255)
if self._normalize:
img = (img - 128.0)/128.0
return (img, x, y, label_img)
def getSegmentation(img_path,
patch_size = 256,
stride_size = 128,
batch_size = 32,
quick = True,
tta_list = None,
crf = False,
status = None):
"""
Saves the prediction at the same location as the input image
args:
img_path: WSI tiff image path (str)
patch_size: patch size for inference (int)
stride_size: stride to skip during segmentation (int)
batch_size: batch_size during inference (int)
quick: if True; prediction is of single model (bool)
else: final segmentation is ensemble of 4 different models
tta_list: type of augmentation required during inference
allowed: ['FLIP_LEFT_RIGHT', 'ROTATE_90', 'ROTATE_180', 'ROTATE_270'] (list(str))
crf: application of conditional random fields in post processing step (bool)
status: required for webserver (json)
return :
saves the prediction in given path (in .tiff format)
prediction: predicted segmentation mask
"""
#Model loading
core_config = tf.ConfigProto()
core_config.gpu_options.allow_growth = False
session =tf.Session(config=core_config)
K.set_session(session)
def load_incep_resnet(model_path):
model = get_inception_resnet_v2_unet_softmax((None, None), weights=None)
model.load_weights(model_path)
print ("Loaded Model Weights %s" % model_path)
return model
def load_unet_densenet(model_path):
model = unet_densenet121((None, None), weights=None)
model.load_weights(model_path)
print ("Loaded Model Weights %s" % model_path)
return model
def load_deeplabv3(model_path, OS):
model = Deeplabv3(input_shape=(patch_size, patch_size, 3),weights=None,classes=2,activation='softmax',backbone='xception',OS=OS)
model.load_weights(model_path)
print ("Loaded Model Weights %s" % model_path)
return model
model_path_root = os.path.join(DigiPathAI.digipathai_folder,'digestpath_models')
model_dict = {}
if quick == True:
model_dict['densenet'] = load_unet_densenet(os.path.join(model_path_root,'densenet.h5'))
else:
model_dict['inception'] = load_incep_resnet(os.path.join(model_path_root,'inception.h5'))
model_dict['densenet'] = load_unet_densenet(os.path.join(model_path_root,'densenet.h5'))
model_dict['deeplab'] = load_deeplabv3(os.path.join(model_path_root,'deeplab.h5'))
ensemble_key = 'ensemble_key'
model_dict[ensemble_key] = 'ensemble'
models_to_save = [ensemble_key]
model_keys = list(model_dict.keys())
#Stitcher
start_time = time.time()
wsi_path = img_path
wsi_obj = openslide.OpenSlide(wsi_path)
x_max_dim,y_max_dim = wsi_obj.level_dimensions[0]
count_map = np.zeros(wsi_obj.level_dimensions[0],dtype='uint8')
prd_im_fll_dict = {}
memmaps_path = os.path.join(DigiPathAI.digipathai_folder,'memmaps')
os.makedirs(memmaps_path,exist_ok=True)
for key in models_to_save:
prd_im_fll_dict[key] = np.memmap(os.path.join(memmaps_path,'%s.dat'%(key)), dtype=np.float32,mode='w+', shape=(wsi_obj.level_dimensions[0]))
#Take the smallest resolution available
level = len(wsi_obj.level_dimensions) -1
scld_dms = wsi_obj.level_dimensions[-1]
scale_sampling_stride = stride_size//int(wsi_obj.level_downsamples[level])
print("Level %d , stride %d, scale stride %d" %(level,stride_size, scale_sampling_stride))
scale = lambda x: cv2.resize(x,tuple(reversed(scld_dms))).T
mask_path = None
start_time = time.time()
dataset_obj = WSIStridedPatchDataset(wsi_path,
mask_path=None,
label_path=None,
image_size=patch_size,
normalize=True,
flip=None, rotate=None,
level=level, sampling_stride=scale_sampling_stride, roi_masking=True)
dataloader = DataLoader(dataset_obj, batch_size=batch_size, num_workers=batch_size, drop_last=True)
dataset_obj.save_scaled_imgs()
print(dataset_obj.get_mask().shape)
st_im = dataset_obj.get_strided_mask()
mask_im = np.dstack([dataset_obj.get_mask().T]*3).astype('uint8')*255
st_im = np.dstack([dataset_obj.get_strided_mask().T]*3).astype('uint8')*255
im_im = np.array(dataset_obj._slide_scaled.convert('RGB'))
ov_im = mask_im/2 + im_im/2
ov_im_stride = st_im/2 + im_im/2
print("Total iterations: %d %d" % (dataloader.__len__(), dataloader.dataset.__len__()))
for i,(data, xes, ys, label) in enumerate(dataloader):
tmp_pls= lambda x: x + patch_size
tmp_mns= lambda x: x
image_patches = data.cpu().data.numpy()
image_patches = data.cpu().data.numpy()
pred_map_dict = {}
pred_map_dict[ensemble_key] = 0
for key in model_keys:
pred_map_dict[key] = model_dict[key].predict(image_patches,verbose=0,batch_size=batch_size)
pred_map_dict[ensemble_key]+=pred_map_dict[key]
pred_map_dict[ensemble_key]/=len(model_keys)
actual_batch_size = image_patches.shape[0]
for j in range(actual_batch_size):
x = int(xes[j])
y = int(ys[j])
wsi_img = image_patches[j]*128+128
patch_mask = TissueMaskGenerationPatch(wsi_img)
for key in models_to_save:
prediction = pred_map_dict[key][j,:,:,1]
prediction*=patch_mask
prd_im_fll_dict[key][tmp_mns(x):tmp_pls(x),tmp_mns(y):tmp_pls(y)] += prediction
count_map[tmp_mns(x):tmp_pls(x),tmp_mns(y):tmp_pls(y)] += np.ones((patch_size,patch_size),dtype='uint8')
if (i+1)%100==0 or i==0 or i<10:
print("Completed %i Time elapsed %.2f min | Max count %d "%(i,(time.time()-start_time)/60,count_map.max()))
print("Fully completed %i Time elapsed %.2f min | Max count %d "%(i,(time.time()-start_time)/60,count_map.max()))
start_time = time.time()
print("\t Dividing by count_map")
np.place(count_map, count_map==0, 1)
for key in models_to_save:
prd_im_fll_dict[key]/=count_map
del count_map
gc.collect()
print("\t Scaling prediciton")
prob_map_dict = {}
for key in models_to_save:
prob_map_dict[key] = scale(prd_im_fll_dict[key])
prob_map_dict[key] = (prob_map_dict[key]*255).astype('uint8')
print("\t Thresholding prediction")
threshold = 0.5
for key in models_to_save:
np.place(prd_im_fll_dict[key],prd_im_fll_dict[key]>=threshold, 255)
np.place(prd_im_fll_dict[key],prd_im_fll_dict[key]<threshold, 0)
print("\t Calculated in %f" % ((time.time() - start_time)/60))
start_time = time.time()
print("\t Saving ground truth")
save_model_keys = models_to_save
save_path = '-'.join(img_path.split('-')[:-1]+["mask"])+'.'+'.tiff'
for key in models_to_save:
print("\t Saving to %s %s" %(save_path,key))
tifffile.imsave(os.path.join(save_path, prd_im_fll_dict[key].T, compress=9))
print("\t Calculated in %f" % ((time.time() - start_time)/60))
start_time = time.time()
start_time = time.time()
print("\t Saving ground truth")
os.system('convert ' + save_path + " -compress jpeg -quality 90 -define tiff:tile-geometry=256x256 ptif:"+save_path)
print("\t Calculated in %f" % ((time.time() - start_time)/60))
start_time = time.time()
# print("\t Generating scaled version of ground truth")
# scaled_prd_im_fll_dict = {}
# for key in models_to_save:
# scaled_prd_im_fll_dict[key] = scale(prd_im_fll_dict[key])
# del prd_im_fll_dict
# gc.collect()
# mask_im = np.dstack([dataset_obj.get_mask().T]*3).astype('uint8')*255
# mask_im = np.dstack([TissueMaskGenerationPatch(im_im)]*3).astype('uint8')*255
# for key in models_to_save:
# mask_im[:,:,0] = scaled_prd_im_fll_dict[key]*255
# ov_prob_stride = st_im + (np.dstack([prob_map_dict[key]]*3)*255).astype('uint8')
# np.place(ov_prob_stride,ov_prob_stride>255,255)
# imsave(mask_im,ov_prob_stride,prob_map_dict[key],scaled_prd_im_fll_dict[key],im_im,out=os.path.join(out_dir_dict[key],'ref_'+out_file)+'.png')
# for key in models_to_save:
# with open(os.path.join(out_dir_dict[key],'jacc_scores.txt'), 'a') as f:
# f.write("Total,%f\n" %(total_jacc_score_dict[key]/len(sample_ids)))