[381c22]: / man / Exprmclust.Rd

Download this file

63 lines (55 with data), 1.6 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/DIscBIO-generic-Exprmclust.R
\name{Exprmclust}
\alias{Exprmclust}
\alias{Exprmclust,DISCBIO-method}
\alias{Exprmclust,data.frame-method}
\title{Performing Model-based clustering on expression values}
\usage{
Exprmclust(
object,
K = 3,
modelNames = "VVV",
reduce = TRUE,
cluster = NULL,
quiet = FALSE
)
\S4method{Exprmclust}{DISCBIO}(
object,
K = 3,
modelNames = "VVV",
reduce = TRUE,
cluster = NULL,
quiet = FALSE
)
\S4method{Exprmclust}{data.frame}(
object,
K = 3,
modelNames = "VVV",
reduce = TRUE,
cluster = NULL,
quiet = FALSE
)
}
\arguments{
\item{object}{\code{DISCBIO} class object.}
\item{K}{An integer vector specifying all possible cluster numbers. Default
is 3.}
\item{modelNames}{model to be used in model-based clustering. By default
"ellipsoidal, varying volume, shape, and orientation" is used.}
\item{reduce}{A logical vector that allows performing the PCA on the
expression data. Default is TRUE.}
\item{cluster}{A vector showing the ID of cells in the clusters.}
\item{quiet}{if `TRUE`, suppresses intermediary output}
}
\value{
If `object` is of class DISCBIO, the output is the same object with
the MBclusters slot filled. If the `object` is a data frame, the function
returns a named list containing the four objects that together correspond
to the contents of the MBclusters slot.
}
\description{
this function first uses principal component analysis (PCA) to
reduce dimensionality of original data. It then performs model-based
clustering on the transformed expression values.
}