|
a |
|
b/man/sammy.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/internal-functions-samr-adapted.R |
|
|
3 |
\name{sammy} |
|
|
4 |
\alias{sammy} |
|
|
5 |
\title{Significance analysis of microarrays} |
|
|
6 |
\usage{ |
|
|
7 |
sammy( |
|
|
8 |
data, |
|
|
9 |
resp.type = c("Quantitative", "Two class unpaired", "Survival", "Multiclass", |
|
|
10 |
"One class", "Two class paired", "Two class unpaired timecourse", |
|
|
11 |
"One class timecourse", "Two class paired timecourse", "Pattern discovery"), |
|
|
12 |
assay.type = c("array", "seq"), |
|
|
13 |
s0 = NULL, |
|
|
14 |
s0.perc = NULL, |
|
|
15 |
nperms = 100, |
|
|
16 |
center.arrays = FALSE, |
|
|
17 |
testStatistic = c("standard", "wilcoxon"), |
|
|
18 |
time.summary.type = c("slope", "signed.area"), |
|
|
19 |
regression.method = c("standard", "ranks"), |
|
|
20 |
return.x = FALSE, |
|
|
21 |
knn.neighbors = 10, |
|
|
22 |
random.seed = NULL, |
|
|
23 |
nresamp = 20, |
|
|
24 |
nresamp.perm = NULL, |
|
|
25 |
xl.mode = c("regular", "firsttime", "next20", "lasttime"), |
|
|
26 |
xl.time = NULL, |
|
|
27 |
xl.prevfit = NULL |
|
|
28 |
) |
|
|
29 |
} |
|
|
30 |
\arguments{ |
|
|
31 |
\item{data}{Data object with components x- p by n matrix of features, one |
|
|
32 |
observation per column (missing values allowed); y- n-vector of outcome |
|
|
33 |
measurements; censoring.status- n-vector of censoring censoring.status |
|
|
34 |
(1= died or event occurred, 0=survived, or event was censored), needed for a |
|
|
35 |
censored survival outcome} |
|
|
36 |
|
|
|
37 |
\item{resp.type}{Problem type: "Quantitative" for a continuous parameter |
|
|
38 |
(Available for both array and sequencing data); "Two class unpaired" (for |
|
|
39 |
both array and sequencing data); "Survival" for censored survival outcome |
|
|
40 |
(for both array and sequencingdata); "Multiclass": more than 2 groups (for |
|
|
41 |
both array and sequencing data); "One class" for a single group (only for |
|
|
42 |
array data); "Two class paired" for two classes with paired observations |
|
|
43 |
(for both array and sequencing data); "Two class unpaired timecourse" (only |
|
|
44 |
for array data), "One class time course" (only for array data), |
|
|
45 |
"Two class.paired timecourse" (only for array data), or "Pattern discovery" |
|
|
46 |
(only for array data)} |
|
|
47 |
|
|
|
48 |
\item{assay.type}{Assay type: "array" for microarray data, "seq" for counts |
|
|
49 |
from sequencing} |
|
|
50 |
|
|
|
51 |
\item{s0}{Exchangeability factor for denominator of test statistic; Default |
|
|
52 |
is automatic choice. Only used for array data.} |
|
|
53 |
|
|
|
54 |
\item{s0.perc}{Percentile of standard deviation values to use for s0; default |
|
|
55 |
is automatic choice; -1 means s0=0 (different from s0.perc=0, meaning |
|
|
56 |
s0=zeroeth percentile of standard deviation values= min of sd values. |
|
|
57 |
Only used for array data.} |
|
|
58 |
|
|
|
59 |
\item{nperms}{Number of permutations used to estimate false discovery rates} |
|
|
60 |
|
|
|
61 |
\item{center.arrays}{Should the data for each sample (array) be median |
|
|
62 |
centered at the outset? Default =FALSE. Only used for array data.} |
|
|
63 |
|
|
|
64 |
\item{testStatistic}{Test statistic to use in two class unpaired case.Either |
|
|
65 |
"standard" (t-statistic) or ,"wilcoxon" (Two-sample wilcoxon or Mann-Whitney |
|
|
66 |
test). Only used for array data.} |
|
|
67 |
|
|
|
68 |
\item{time.summary.type}{Summary measure for each time course: "slope", or |
|
|
69 |
"signed.area"). Only used for array data.} |
|
|
70 |
|
|
|
71 |
\item{regression.method}{Regression method for quantitative case: "standard", |
|
|
72 |
(linear least squares) or "ranks" (linear least squares on ranked data). |
|
|
73 |
Only used for array data.} |
|
|
74 |
|
|
|
75 |
\item{return.x}{Should the matrix of feature values be returned? Only useful |
|
|
76 |
for time course data, where x contains summaries of the features over time. |
|
|
77 |
Otherwise x is the same as the input data} |
|
|
78 |
|
|
|
79 |
\item{knn.neighbors}{Number of nearest neighbors to use for imputation of |
|
|
80 |
missing features values. Only used for array data.} |
|
|
81 |
|
|
|
82 |
\item{random.seed}{Optional initial seed for random number generator |
|
|
83 |
(integer)} |
|
|
84 |
|
|
|
85 |
\item{nresamp}{For assay.type="seq", number of resamples used to construct |
|
|
86 |
test statistic. Default 20. Only used for sequencing data.} |
|
|
87 |
|
|
|
88 |
\item{nresamp.perm}{For assay.type="seq", number of resamples used to |
|
|
89 |
construct test statistic for permutations. Default is equal to nresamp and it |
|
|
90 |
must be at most nresamp. Only used for sequencing data.} |
|
|
91 |
|
|
|
92 |
\item{xl.mode}{Used by Excel interface} |
|
|
93 |
|
|
|
94 |
\item{xl.time}{Used by Excel interface} |
|
|
95 |
|
|
|
96 |
\item{xl.prevfit}{Used by Excel interface} |
|
|
97 |
} |
|
|
98 |
\description{ |
|
|
99 |
This function is an adaptation of `samr::samr` |
|
|
100 |
} |