--- a +++ b/man/FindOutliers.Rd @@ -0,0 +1,73 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/DIscBIO-generic-FindOutliers.R +\name{FindOutliers} +\alias{FindOutliers} +\alias{FindOutliers,DISCBIO-method} +\title{Inference of outlier cells} +\usage{ +FindOutliers( + object, + K, + outminc = 5, + outlg = 2, + probthr = 0.001, + thr = 2^-(1:40), + outdistquant = 0.75, + plot = TRUE, + quiet = FALSE +) + +\S4method{FindOutliers}{DISCBIO}( + object, + K, + outminc = 5, + outlg = 2, + probthr = 0.001, + thr = 2^-(1:40), + outdistquant = 0.75, + plot = TRUE, + quiet = FALSE +) +} +\arguments{ +\item{object}{\code{DISCBIO} class object.} + +\item{K}{Number of clusters to be used.} + +\item{outminc}{minimal transcript count of a gene in a clusters to be tested +for being an outlier gene. Default is 5.} + +\item{outlg}{Minimum number of outlier genes required for being an outlier +cell. Default is 2.} + +\item{probthr}{outlier probability threshold for a minimum of \code{outlg} +genes to be an outlier cell. This probability is computed from a negative +binomial background model of expression in a cluster. Default is 0.001.} + +\item{thr}{probability values for which the number of outliers is computed in +order to plot the dependence of the number of outliers on the probability +threshold. Default is 2**-(1:40).set} + +\item{outdistquant}{Real number between zero and one. Outlier cells are +merged to outlier clusters if their distance smaller than the +outdistquant-quantile of the distance distribution of pairs of cells in +the orginal clusters after outlier removal. Default is 0.75.} + +\item{plot}{if `TRUE`, produces a plot of -log10prob per K} + +\item{quiet}{if `TRUE`, intermediary output is suppressed} +} +\value{ +A named vector of the genes containing outlying cells and the number + of cells on each. +} +\description{ +This functions performs the outlier identification for k-means +and model-based clustering +} +\examples{ +sc <- DISCBIO(valuesG1msTest) +sc <- Clustexp(sc, cln = 2) # K-means clustering +FindOutliers(sc, K = 2) + +}