|
a |
|
b/man/Exprmclust.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/DIscBIO-generic-Exprmclust.R |
|
|
3 |
\name{Exprmclust} |
|
|
4 |
\alias{Exprmclust} |
|
|
5 |
\alias{Exprmclust,DISCBIO-method} |
|
|
6 |
\alias{Exprmclust,data.frame-method} |
|
|
7 |
\title{Performing Model-based clustering on expression values} |
|
|
8 |
\usage{ |
|
|
9 |
Exprmclust( |
|
|
10 |
object, |
|
|
11 |
K = 3, |
|
|
12 |
modelNames = "VVV", |
|
|
13 |
reduce = TRUE, |
|
|
14 |
cluster = NULL, |
|
|
15 |
quiet = FALSE |
|
|
16 |
) |
|
|
17 |
|
|
|
18 |
\S4method{Exprmclust}{DISCBIO}( |
|
|
19 |
object, |
|
|
20 |
K = 3, |
|
|
21 |
modelNames = "VVV", |
|
|
22 |
reduce = TRUE, |
|
|
23 |
cluster = NULL, |
|
|
24 |
quiet = FALSE |
|
|
25 |
) |
|
|
26 |
|
|
|
27 |
\S4method{Exprmclust}{data.frame}( |
|
|
28 |
object, |
|
|
29 |
K = 3, |
|
|
30 |
modelNames = "VVV", |
|
|
31 |
reduce = TRUE, |
|
|
32 |
cluster = NULL, |
|
|
33 |
quiet = FALSE |
|
|
34 |
) |
|
|
35 |
} |
|
|
36 |
\arguments{ |
|
|
37 |
\item{object}{\code{DISCBIO} class object.} |
|
|
38 |
|
|
|
39 |
\item{K}{An integer vector specifying all possible cluster numbers. Default |
|
|
40 |
is 3.} |
|
|
41 |
|
|
|
42 |
\item{modelNames}{model to be used in model-based clustering. By default |
|
|
43 |
"ellipsoidal, varying volume, shape, and orientation" is used.} |
|
|
44 |
|
|
|
45 |
\item{reduce}{A logical vector that allows performing the PCA on the |
|
|
46 |
expression data. Default is TRUE.} |
|
|
47 |
|
|
|
48 |
\item{cluster}{A vector showing the ID of cells in the clusters.} |
|
|
49 |
|
|
|
50 |
\item{quiet}{if `TRUE`, suppresses intermediary output} |
|
|
51 |
} |
|
|
52 |
\value{ |
|
|
53 |
If `object` is of class DISCBIO, the output is the same object with |
|
|
54 |
the MBclusters slot filled. If the `object` is a data frame, the function |
|
|
55 |
returns a named list containing the four objects that together correspond |
|
|
56 |
to the contents of the MBclusters slot. |
|
|
57 |
} |
|
|
58 |
\description{ |
|
|
59 |
this function first uses principal component analysis (PCA) to |
|
|
60 |
reduce dimensionality of original data. It then performs model-based |
|
|
61 |
clustering on the transformed expression values. |
|
|
62 |
} |