Diff of /man/DISCBIO.Rd [000000] .. [28e211]

Switch to unified view

a b/man/DISCBIO.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/DIscBIO-classes.R
3
\docType{class}
4
\name{DISCBIO}
5
\alias{DISCBIO}
6
\alias{DISCBIO-class,}
7
\alias{DISCBIO-class}
8
\title{The DISCBIO Class}
9
\arguments{
10
\item{object}{An DISCBIO object.}
11
}
12
\description{
13
The DISCBIO class is the central object storing all information
14
  generated throughout the pipeline.
15
}
16
\details{
17
DISCBIO
18
}
19
\section{Slots}{
20
21
\describe{
22
\item{\code{SingleCellExperiment}}{Representation of the single cell input data,
23
including both cells from regular and ERCC spike-in samples. Data are
24
stored in a SingleCellExperiment object.}
25
26
\item{\code{expdata}}{The raw expression data matrix with cells as columns and
27
genes as rows in sparse matrix format. It does not contain ERCC spike-ins.}
28
29
\item{\code{expdataAll}}{The raw expression data matrix with cells as columns
30
and genes as rows in sparse matrix format. It can contain ERCC spike-ins.}
31
32
\item{\code{ndata}}{Data with expression normalized to one for each cell.}
33
34
\item{\code{fdata}}{Filtered data with expression normalized to one for each
35
cell.}
36
37
\item{\code{distances}}{A distance matrix.}
38
39
\item{\code{tsne}}{A data.frame with coordinates of two-dimensional tsne layout
40
for the K-means clustering.}
41
42
\item{\code{background}}{A list storing the polynomial fit for the background
43
model of gene expression variability. It is used for outlier
44
identification.}
45
46
\item{\code{out}}{A list storing information on outlier cells used for the
47
prediction of rare cell types.}
48
49
\item{\code{cpart}}{A vector containing the final clustering partition computed
50
by K-means.}
51
52
\item{\code{fcol}}{A vector contaning the colour scheme for the clusters.}
53
54
\item{\code{filterpar}}{A list containing the parameters used for cell and gene
55
filtering based on expression.}
56
57
\item{\code{clusterpar}}{A list containing the parameters used for the K-means
58
clustering.}
59
60
\item{\code{outlierpar}}{A list containing the parameters used for outlier
61
identification.}
62
63
\item{\code{kmeans}}{A list containing the results of running the Clustexp()
64
function.}
65
66
\item{\code{MBclusters}}{A vector containing the final clustering partition
67
computed by Model-based clustering.}
68
69
\item{\code{kordering}}{A vector containing the Pseudo-time ordering based on
70
k-means clusters.}
71
72
\item{\code{MBordering}}{A vector containing the Pseudo-time ordering based on
73
Model-based clusters.}
74
75
\item{\code{MBtsne}}{A data.frame with coordinates of two-dimensional tsne
76
layout for the Model-based clustering.}
77
78
\item{\code{noiseF}}{A vector containing the gene list resulted from running the
79
noise filtering.}
80
81
\item{\code{FinalGeneList}}{A vector containing the final gene list resulted
82
from running the noise filtering or/and the expression filtering.}
83
}}
84
85
\examples{
86
class(valuesG1msTest)
87
G1_reclassified <- DISCBIO(valuesG1msTest)
88
class(G1_reclassified)
89
str(G1_reclassified, max.level = 2)
90
identical(G1_reclassified@expdataAll, valuesG1msTest)
91
}