|
a |
|
b/man/DISCBIO.Rd |
|
|
1 |
% Generated by roxygen2: do not edit by hand |
|
|
2 |
% Please edit documentation in R/DIscBIO-classes.R |
|
|
3 |
\docType{class} |
|
|
4 |
\name{DISCBIO} |
|
|
5 |
\alias{DISCBIO} |
|
|
6 |
\alias{DISCBIO-class,} |
|
|
7 |
\alias{DISCBIO-class} |
|
|
8 |
\title{The DISCBIO Class} |
|
|
9 |
\arguments{ |
|
|
10 |
\item{object}{An DISCBIO object.} |
|
|
11 |
} |
|
|
12 |
\description{ |
|
|
13 |
The DISCBIO class is the central object storing all information |
|
|
14 |
generated throughout the pipeline. |
|
|
15 |
} |
|
|
16 |
\details{ |
|
|
17 |
DISCBIO |
|
|
18 |
} |
|
|
19 |
\section{Slots}{ |
|
|
20 |
|
|
|
21 |
\describe{ |
|
|
22 |
\item{\code{SingleCellExperiment}}{Representation of the single cell input data, |
|
|
23 |
including both cells from regular and ERCC spike-in samples. Data are |
|
|
24 |
stored in a SingleCellExperiment object.} |
|
|
25 |
|
|
|
26 |
\item{\code{expdata}}{The raw expression data matrix with cells as columns and |
|
|
27 |
genes as rows in sparse matrix format. It does not contain ERCC spike-ins.} |
|
|
28 |
|
|
|
29 |
\item{\code{expdataAll}}{The raw expression data matrix with cells as columns |
|
|
30 |
and genes as rows in sparse matrix format. It can contain ERCC spike-ins.} |
|
|
31 |
|
|
|
32 |
\item{\code{ndata}}{Data with expression normalized to one for each cell.} |
|
|
33 |
|
|
|
34 |
\item{\code{fdata}}{Filtered data with expression normalized to one for each |
|
|
35 |
cell.} |
|
|
36 |
|
|
|
37 |
\item{\code{distances}}{A distance matrix.} |
|
|
38 |
|
|
|
39 |
\item{\code{tsne}}{A data.frame with coordinates of two-dimensional tsne layout |
|
|
40 |
for the K-means clustering.} |
|
|
41 |
|
|
|
42 |
\item{\code{background}}{A list storing the polynomial fit for the background |
|
|
43 |
model of gene expression variability. It is used for outlier |
|
|
44 |
identification.} |
|
|
45 |
|
|
|
46 |
\item{\code{out}}{A list storing information on outlier cells used for the |
|
|
47 |
prediction of rare cell types.} |
|
|
48 |
|
|
|
49 |
\item{\code{cpart}}{A vector containing the final clustering partition computed |
|
|
50 |
by K-means.} |
|
|
51 |
|
|
|
52 |
\item{\code{fcol}}{A vector contaning the colour scheme for the clusters.} |
|
|
53 |
|
|
|
54 |
\item{\code{filterpar}}{A list containing the parameters used for cell and gene |
|
|
55 |
filtering based on expression.} |
|
|
56 |
|
|
|
57 |
\item{\code{clusterpar}}{A list containing the parameters used for the K-means |
|
|
58 |
clustering.} |
|
|
59 |
|
|
|
60 |
\item{\code{outlierpar}}{A list containing the parameters used for outlier |
|
|
61 |
identification.} |
|
|
62 |
|
|
|
63 |
\item{\code{kmeans}}{A list containing the results of running the Clustexp() |
|
|
64 |
function.} |
|
|
65 |
|
|
|
66 |
\item{\code{MBclusters}}{A vector containing the final clustering partition |
|
|
67 |
computed by Model-based clustering.} |
|
|
68 |
|
|
|
69 |
\item{\code{kordering}}{A vector containing the Pseudo-time ordering based on |
|
|
70 |
k-means clusters.} |
|
|
71 |
|
|
|
72 |
\item{\code{MBordering}}{A vector containing the Pseudo-time ordering based on |
|
|
73 |
Model-based clusters.} |
|
|
74 |
|
|
|
75 |
\item{\code{MBtsne}}{A data.frame with coordinates of two-dimensional tsne |
|
|
76 |
layout for the Model-based clustering.} |
|
|
77 |
|
|
|
78 |
\item{\code{noiseF}}{A vector containing the gene list resulted from running the |
|
|
79 |
noise filtering.} |
|
|
80 |
|
|
|
81 |
\item{\code{FinalGeneList}}{A vector containing the final gene list resulted |
|
|
82 |
from running the noise filtering or/and the expression filtering.} |
|
|
83 |
}} |
|
|
84 |
|
|
|
85 |
\examples{ |
|
|
86 |
class(valuesG1msTest) |
|
|
87 |
G1_reclassified <- DISCBIO(valuesG1msTest) |
|
|
88 |
class(G1_reclassified) |
|
|
89 |
str(G1_reclassified, max.level = 2) |
|
|
90 |
identical(G1_reclassified@expdataAll, valuesG1msTest) |
|
|
91 |
} |