--- a +++ b/man/DISCBIO.Rd @@ -0,0 +1,91 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/DIscBIO-classes.R +\docType{class} +\name{DISCBIO} +\alias{DISCBIO} +\alias{DISCBIO-class,} +\alias{DISCBIO-class} +\title{The DISCBIO Class} +\arguments{ +\item{object}{An DISCBIO object.} +} +\description{ +The DISCBIO class is the central object storing all information + generated throughout the pipeline. +} +\details{ +DISCBIO +} +\section{Slots}{ + +\describe{ +\item{\code{SingleCellExperiment}}{Representation of the single cell input data, +including both cells from regular and ERCC spike-in samples. Data are +stored in a SingleCellExperiment object.} + +\item{\code{expdata}}{The raw expression data matrix with cells as columns and +genes as rows in sparse matrix format. It does not contain ERCC spike-ins.} + +\item{\code{expdataAll}}{The raw expression data matrix with cells as columns +and genes as rows in sparse matrix format. It can contain ERCC spike-ins.} + +\item{\code{ndata}}{Data with expression normalized to one for each cell.} + +\item{\code{fdata}}{Filtered data with expression normalized to one for each +cell.} + +\item{\code{distances}}{A distance matrix.} + +\item{\code{tsne}}{A data.frame with coordinates of two-dimensional tsne layout +for the K-means clustering.} + +\item{\code{background}}{A list storing the polynomial fit for the background +model of gene expression variability. It is used for outlier +identification.} + +\item{\code{out}}{A list storing information on outlier cells used for the +prediction of rare cell types.} + +\item{\code{cpart}}{A vector containing the final clustering partition computed +by K-means.} + +\item{\code{fcol}}{A vector contaning the colour scheme for the clusters.} + +\item{\code{filterpar}}{A list containing the parameters used for cell and gene +filtering based on expression.} + +\item{\code{clusterpar}}{A list containing the parameters used for the K-means +clustering.} + +\item{\code{outlierpar}}{A list containing the parameters used for outlier +identification.} + +\item{\code{kmeans}}{A list containing the results of running the Clustexp() +function.} + +\item{\code{MBclusters}}{A vector containing the final clustering partition +computed by Model-based clustering.} + +\item{\code{kordering}}{A vector containing the Pseudo-time ordering based on +k-means clusters.} + +\item{\code{MBordering}}{A vector containing the Pseudo-time ordering based on +Model-based clusters.} + +\item{\code{MBtsne}}{A data.frame with coordinates of two-dimensional tsne +layout for the Model-based clustering.} + +\item{\code{noiseF}}{A vector containing the gene list resulted from running the +noise filtering.} + +\item{\code{FinalGeneList}}{A vector containing the final gene list resulted +from running the noise filtering or/and the expression filtering.} +}} + +\examples{ +class(valuesG1msTest) +G1_reclassified <- DISCBIO(valuesG1msTest) +class(G1_reclassified) +str(G1_reclassified, max.level = 2) +identical(G1_reclassified@expdataAll, valuesG1msTest) +}