--- a +++ b/man/Clustexp.Rd @@ -0,0 +1,82 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/DIscBIO-generic-Clustexp.R +\docType{methods} +\name{Clustexp} +\alias{Clustexp} +\alias{Clustexp,DISCBIO-method} +\title{Clustering of single-cell transcriptome data} +\usage{ +Clustexp( + object, + clustnr = 3, + bootnr = 50, + metric = "pearson", + do.gap = TRUE, + SE.method = "Tibs2001SEmax", + SE.factor = 0.25, + B.gap = 50, + cln = 0, + rseed = NULL, + quiet = FALSE +) + +\S4method{Clustexp}{DISCBIO}( + object, + clustnr = 3, + bootnr = 50, + metric = "pearson", + do.gap = TRUE, + SE.method = "Tibs2001SEmax", + SE.factor = 0.25, + B.gap = 50, + cln = 0, + rseed = NULL, + quiet = FALSE +) +} +\arguments{ +\item{object}{\code{DISCBIO} class object.} + +\item{clustnr}{Maximum number of clusters for the derivation of the cluster +number by the saturation of mean within-cluster-dispersion. Default is 20.} + +\item{bootnr}{A numeric value of booststrapping runs for \code{clusterboot}. +Default is 50.} + +\item{metric}{Is the method to transform the input data to a distance object. +Metric has to be one of the following: ["spearman", "pearson", "kendall", +"euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"].} + +\item{do.gap}{A logical vector that allows generating the number of clusters +based on the gap statistics. Default is TRUE.} + +\item{SE.method}{The SE.method determines the first local maximum of the gap +statistics. The SE.method has to be one of the following:["firstSEmax", +"Tibs2001SEmax", "globalSEmax", "firstmax", "globalmax"]. Default is +"Tibs2001SEmax"} + +\item{SE.factor}{A numeric value of the fraction of the standard deviation by +which the local maximum is required to differ from the neighboring points +it is compared to. Default is 0.25.} + +\item{B.gap}{Number of bootstrap runs for the calculation of the gap +statistics. Default is 50} + +\item{cln}{Number of clusters to be used. Default is \code{NULL} and the +cluster number is inferred by the saturation criterion.} + +\item{rseed}{Random integer to enforce reproducible clustering results.} + +\item{quiet}{if `TRUE`, intermediate output is suppressed} +} +\value{ +The DISCBIO-class object input with the cpart slot filled. +} +\description{ +This functions performs the initial clustering of the RaceID + algorithm. +} +\examples{ +sc <- DISCBIO(valuesG1msTest) # changes signature of data +sc <- Clustexp(sc, cln = 2) +}