a b/man/ClassVectoringDT.Rd
1
% Generated by roxygen2: do not edit by hand
2
% Please edit documentation in R/DIscBIO-generic-ClassVectoringDT.R
3
\name{ClassVectoringDT}
4
\alias{ClassVectoringDT}
5
\alias{ClassVectoringDT,DISCBIO-method}
6
\title{Generating a class vector to be used for the decision tree analysis.}
7
\usage{
8
ClassVectoringDT(
9
  object,
10
  Clustering = "K-means",
11
  K,
12
  First = "CL1",
13
  Second = "CL2",
14
  sigDEG,
15
  quiet = FALSE
16
)
17
18
\S4method{ClassVectoringDT}{DISCBIO}(
19
  object,
20
  Clustering = "K-means",
21
  K,
22
  First = "CL1",
23
  Second = "CL2",
24
  sigDEG,
25
  quiet = FALSE
26
)
27
}
28
\arguments{
29
\item{object}{\code{DISCBIO} class object.}
30
31
\item{Clustering}{Clustering has to be one of the following: ["K-means",
32
"MB"]. Default is "K-means"}
33
34
\item{K}{A numeric value of the number of clusters.}
35
36
\item{First}{A string vector showing the first target cluster.  Default is
37
"CL1"}
38
39
\item{Second}{A string vector showing the second target cluster.  Default is
40
"CL2"}
41
42
\item{sigDEG}{A data frame of the differentially expressed genes (DEGs)
43
generated by running "DEGanalysis()" or "DEGanalysisM()".}
44
45
\item{quiet}{If `TRUE`, suppresses intermediary output}
46
}
47
\value{
48
A data frame.
49
}
50
\description{
51
This function generates a class vector for the input dataset so
52
  the decision tree analysis can be implemented afterwards.
53
}