|
a |
|
b/R/cross.val.R |
|
|
1 |
cross.val <- function( |
|
|
2 |
exp.df, class.vec, segments, performance, class.algo, quiet = TRUE |
|
|
3 |
) { |
|
|
4 |
# Validation |
|
|
5 |
if (!(class.algo %in% c("J48", "rpart"))) { |
|
|
6 |
stop("Unknown classification algorithm") |
|
|
7 |
} |
|
|
8 |
# Start cross validation loop |
|
|
9 |
class1 <- levels(class.vec)[1] |
|
|
10 |
for (fold in seq_len(length(segments))) { |
|
|
11 |
if (!quiet) message("Fold ", fold, " of ", length(segments)) |
|
|
12 |
# Define training and test set |
|
|
13 |
test.ind <- segments[[fold]] |
|
|
14 |
training.set <- exp.df[-test.ind, ] |
|
|
15 |
test.set <- exp.df[test.ind, , drop = FALSE] |
|
|
16 |
test.set$training.class <- class.vec[-test.ind] |
|
|
17 |
test.class <- class.vec[test.ind] |
|
|
18 |
# Train J48 on training set |
|
|
19 |
if (class.algo == "J48") { |
|
|
20 |
cv.model <- J48(training.class ~ ., training.set) |
|
|
21 |
pred.class <- predict(cv.model, test.set) |
|
|
22 |
} else { |
|
|
23 |
cv.model <- rpart(training.class ~ ., training.set, method = "class") |
|
|
24 |
pred.class <- predict(cv.model, test.set, type = "class") |
|
|
25 |
} |
|
|
26 |
# Evaluate model on test set |
|
|
27 |
performance <- eval.pred( |
|
|
28 |
pred.class, test.class, class1, performance |
|
|
29 |
) |
|
|
30 |
} |
|
|
31 |
return(performance) |
|
|
32 |
} |