|
a |
|
b/R/DIscBIO-generic-clusteringOrder.R |
|
|
1 |
#' @title Pseudo-time ordering based on k-means clusters |
|
|
2 |
#' @description This function takes the exact output of exprmclust function and |
|
|
3 |
#' construct Pseudo-time ordering by mapping all cells onto the path that |
|
|
4 |
#' connects cluster centers. |
|
|
5 |
#' @param object \code{DISCBIO} class object. |
|
|
6 |
#' @param quiet if `TRUE`, suppresses intermediary output |
|
|
7 |
#' @param export if `TRUE`, exports order table to csv |
|
|
8 |
#' @param filename Name of the exported file (if `export=TRUE`) |
|
|
9 |
#' @importFrom TSCAN TSCANorder |
|
|
10 |
#' @note This function has been replaced by pseudoTimeOrdering(), but it is |
|
|
11 |
#' being kept for legacy purposes. It will, however, be removed from future |
|
|
12 |
#' versions of DIscBIO. |
|
|
13 |
#' @return The DISCBIO-class object input with the kordering slot filled. |
|
|
14 |
setGeneric("KmeanOrder", function( |
|
|
15 |
object, quiet = FALSE, export = FALSE, |
|
|
16 |
filename = "Cellular_pseudo-time_ordering_based_on_k-meansc-lusters") { |
|
|
17 |
standardGeneric("KmeanOrder") |
|
|
18 |
}) |
|
|
19 |
|
|
|
20 |
#' @export |
|
|
21 |
#' @rdname KmeanOrder |
|
|
22 |
setMethod( |
|
|
23 |
"KmeanOrder", |
|
|
24 |
signature = "DISCBIO", |
|
|
25 |
definition = function(object, quiet, export, filename) { |
|
|
26 |
warning( |
|
|
27 |
"KmeanOrder() has been replaced with pseudoTimeOrdering(), ", |
|
|
28 |
"which performs pseudo-time ordering for both k-means ", |
|
|
29 |
"and model-based clustering. ", |
|
|
30 |
"This function is being kept for legacy purposes, ", |
|
|
31 |
"but will be removed in future versions of DIscBIO. ", |
|
|
32 |
"Please adapt your scripts accordingly." |
|
|
33 |
) |
|
|
34 |
# Validation |
|
|
35 |
if (length(object@kmeans$kpart) == 0) { |
|
|
36 |
stop("run Clustexp before KmeanOrder") |
|
|
37 |
} |
|
|
38 |
|
|
|
39 |
Obj <- object@fdata |
|
|
40 |
Clusters <- object@cpart |
|
|
41 |
sampleNames <- colnames(object@fdata) |
|
|
42 |
lpsmclust <- Exprmclust(Obj, K = 4, reduce = FALSE, cluster = Clusters) |
|
|
43 |
lpsorder <- TSCANorder(lpsmclust) |
|
|
44 |
orderID <- lpsorder |
|
|
45 |
order <- seq_len(length(lpsorder)) |
|
|
46 |
orderTable <- data.frame(order, orderID) |
|
|
47 |
if (export) write.csv(orderTable, file = paste0(filename, ".csv")) |
|
|
48 |
if (!quiet) print(orderTable) |
|
|
49 |
FinalOrder <- orderTable[match(sampleNames, orderTable$orderID), ] |
|
|
50 |
out_order <- FinalOrder[, 1] |
|
|
51 |
names(out_order) <- names(Clusters) |
|
|
52 |
object@kordering <- out_order |
|
|
53 |
return(object) |
|
|
54 |
} |
|
|
55 |
) |