[5021a4]: / CellDetector.py

Download this file

392 lines (323 with data), 19.3 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 9 08:30:11 2020
@author: Billy
"""
import time
import os
import glob
import math
import skimage.measure as measure
from skimage.segmentation import watershed
import pandas as pd
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import cv2
import random
class CellDetector:
#initialise the Cell Detector
#This class converts AI outputs into Datasets
#one must initialise this class with the folder of the AI outputs
def __init__(self, SaveLoc,outputs = 11, save_prefix = 'predicted'):
assert type(SaveLoc) == type('')
if not os.path.exists(SaveLoc):
raise ValueError("Save directory is illegitimate:", SaveLoc,". Please enter the full filepath of an existing directory containing CellSegmentor's outputs.\n")
else:
os.chdir(SaveLoc)
self.net_images = glob.glob("*.png") + glob.glob("*.tif")
if len(self.net_images) == 0:
raise ValueError("Directory", SaveLoc," exists, but there are no Neural Network outputs in this location.")
self.net_images = [k for k in self.net_images if save_prefix in k]
if len(self.net_images) == 0:
raise ValueError("Directory", SaveLoc," exists, but there are no valid images in this directory. Ensure \'", save_prefix,"\' appears in the save name for all Neural Network outputs. This should occur by default; please don't change file names.\n")
print("Found the following outputs:", self.net_images,"\n")
self.outputs = outputs
self.save_fold = SaveLoc
#this function detects all of the cells within a layer of an AI output image and return a dataframe of those cells' properties
#this function recievees the file location of an image as input.
#
#layers: 0 = basal, 1= prickle, 2 = superficial
def layerDetection(self, imdir, layer = 1, cell_only=True, by_nucleus=False,
plot =[], subplot_shape=(0,0), param_open =1,
param_close = 0, param_erosion=3):
assert type(imdir) == type('')
if subplot_shape == (0,0):
subplot_shape = (int(len(plot)/2)+1, 2)
elif not(subplot_shape[0]*subplot_shape[1] == len(plot) or subplot_shape[0]*subplot_shape[1] == len(plot)-1):
print(subplot_shape)
print(subplot_shape[0]*subplot_shape[1])
print(len(plot))
print(subplot_shape[0]*subplot_shape[1] != len(plot) or subplot_shape[0]*subplot_shape[1] != len(plot)-1)
print("Input Subplot shape is invalid. Automatically being changed to:",(int(len(plot)/2), 2))
subplot_shape = (int(len(plot)/2)+1, 2)
if not os.path.exists(imdir):
raise ValueError("Image directory is illegitimate:", imdir,"\n")
dicter = {}
dicter[0] = 'Basal'
dicter[1] = 'Prickle'
dicter[2] = 'Superficial'
if not (layer in dicter):
raise ValueError("'Layer' arg must be an int between 0-2, corresponding to the layers like such:",dicter)
parent_dir, file = os.path.split(imdir)
imdata = np.array(Image.open(imdir).convert('L')).astype('uint8')
if layer == 0:
image = np.where(np.logical_or(imdata==255,imdata==230),255,0).astype('uint8')
nuclei = np.where(imdata==255,255,0).astype('uint8')
elif layer ==1:
image = np.where(np.logical_or(imdata==204,imdata==179),255,0).astype('uint8')
nuclei = np.where(imdata==204,255,0).astype('uint8')
else:
image = np.where(np.logical_or(imdata==153,imdata==128),255,0).astype('uint8')
nuclei = np.where(imdata==128,255,0).astype('uint8')
kernel = np.ones((3,3),np.uint8)
opening = cv2.morphologyEx(image,cv2.MORPH_CLOSE,kernel, iterations = param_open)
erosion = cv2.erode(opening, kernel,iterations = param_erosion)
closing = cv2.morphologyEx(erosion,cv2.MORPH_OPEN,kernel, iterations = param_close)
if not by_nucleus:
ret, markers = cv2.connectedComponents(closing)
else:
nuclei = cv2.morphologyEx(nuclei,cv2.MORPH_OPEN,kernel, iterations = 1)
ret, markers = cv2.connectedComponents(nuclei)
# Marker labelling
markers = markers.astype(np.int32)
labels = watershed(image, markers, mask=cv2.morphologyEx(image,cv2.MORPH_OPEN,kernel, iterations = 1))
plot_dict = {'AI':imdata,'Watershed':labels,'Original':np.asarray(Image.open(os.path.join(parent_dir,file[10:]))), 'Markers':markers, 'Nuclei':nuclei, 'Binary':image}
if len(plot)==0:
pass
elif len(plot) == 1:
if plot[0] in plot_dict:
plt.plot(plot_dict[plot[0]])
plt.title(plot[0])
else:
print("Your desired plot",plot[0],"is not available. Chose from this list:",plot_dict.keys())
else:
index = 0
while not (plot[index] in plot_dict.keys()):
index+=1
ax1 = plt.subplot(subplot_shape[0],subplot_shape[1], 1)
ax1.title.set_text(plot[index])
ax1.imshow(plot_dict[plot[index]])
for i in range(len(plot)):
i = i+index
try:
plt.subplot(subplot_shape[0],subplot_shape[1],i+1, sharex=ax1, sharey=ax1)
plt.imshow(plot_dict[plot[i]])
plt.title(plot[i])
except:
print(plot[i],"is not available to plot, so has been skipped. Only choose values from:",plot_dict.keys())
table = measure.regionprops(labels)
num_cells = len(table)
if not cell_only:
table_nuclei = measure.regionprops(watershed(markers, markers, mask=markers))
table.extend(table_nuclei)
lister =[]
if layer == 0:
layer='Basal'
elif layer == 1:
layer = 'Prickle'
else:
layer = 'Superficial'
for i,cell in enumerate(table):
entry ={}
if i+1>num_cells:
entry['Type'] = 'nucleus'
else:
entry['Type'] = 'cell'
circ = (4*np.pi*cell['Area'])/(cell['Perimeter']**2)
if circ >100:
circ = np.nan
area = (cell['convex_area']/2)+cell['perimeter']
entry['Origin_Image'] = os.path.splitext(file)[0]
entry['Layer'] = layer
entry['Identifier'] = cell['label']
entry['Area'] = area
if circ == np.nan:
entry['Perimeter'] = cell['perimeter']*1.1
else:
entry['Perimeter'] = math.sqrt((2*area)/circ)
entry['Centroid_y'] = cell['centroid'][0]
entry['Centroid_x'] = cell['centroid'][1]
entry['Solidity'] = cell['solidity']
entry['Major axis diameter'] = cell['major_axis_length']/2
entry['Minor axis diameter'] = cell['minor_axis_length']/2
entry['Circularity'] = circ
lister.append(entry)
return lister
#extracts all of the cell data from each layer in an image and saves a dataframe of that data
def predictOne(self, imdir = None,isRandom = False,cell_only=True, isOpt=True):
if isOpt: optimise = [(0,3,0),(1,0,1),(1,2,1),(2,0,2),(1,3,2),(4,1,3),(1,3,0)]
if imdir == None:
if isRandom:
img_choice = random.randint(0,len(self.net_images)-1)
else:
choice_dict = {}
for i,file in enumerate(self.net_images):
choice_dict[i] = file
ask_str = "Choose one of the following images:\n"+ str(choice_dict)+ " \n"
img_choice = int(input(ask_str))
imdir = os.path.join(self.save_fold, self.net_images[img_choice])
data = []
log = []
if isOpt:
for j in range(3):
data_store = {}
arr_store = {}
if j ==0:
area_boundary = 100
else:
area_boundary = 250
for arangement in optimise:
opening,erosion,closing = arangement
datum = cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=False,
param_open=opening, param_close = closing, param_erosion = erosion)
key = len(list(filter(lambda d: d['Area'] > area_boundary, datum)))
while key in arr_store.keys():
key = key+0.01
data_store[key] =datum
arr_store[key] = str(arangement)+" False"
if j ==0:
datum = cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=True,
param_open=opening, param_close = closing, param_erosion = erosion)
key = len(list(filter(lambda d: d['Area'] > area_boundary, datum)))
while key in arr_store.keys():
key = key+0.01
data_store[key] = datum
arr_store[key] = str(arangement)+" True"
key = np.max(list(arr_store.keys()))
log.append("Layer "+str(j)+", arrangment: "+arr_store[key])
data.extend(data_store[key])
else:
for i in range(len(self.net_images)):
imdir = os.path.join(self.save_fold, self.net_images[i])
for j in range(3):
data.extend(cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=False))
df = pd.DataFrame(data)
save = os.path.join(self.save_fold, "nc_measurements_"+os.path.splitext(os.path.split(imdir)[1])[0]+'.xlsx')
df.to_excel(save)
return df
#extracts all of the cell data from each layer in each image in a folder and saves a dataframe of that data
#this function recieves the file location of a folder of images as input
def predictAll(self, save_loc=None,cell_only=True, isOpt=False):
#The typical most-succesful configurations of image-tuning parameters
if isOpt: optimise = [(0,3,0),(1,0,1),(1,2,1),(2,0,2),(1,3,2),(4,1,3),(1,3,0)]
if save_loc == None:
save_loc = self.save_fold
if not os.path.exists(save_loc):
raise ValueError("Save directory is illegitimate:", save_loc,". Please enter the full filepath of an existing directory containing CellSegmentor's outputs.\n")
log = []
if isOpt:
for i in range(len(self.net_images)):
data = []
imdir = os.path.join(self.save_fold, self.net_images[i])
print("Scraping cell data from:",imdir)
for j in range(3):
data_store = {}
arr_store = {}
if j ==0:
area_boundary = 70
else:
area_boundary = 250
for arangement in optimise:
opening,erosion,closing = arangement
datum = cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=False,
param_open=opening, param_close = closing, param_erosion = erosion)
key = len(list(filter(lambda d: d['Area'] > area_boundary, datum)))
while key in arr_store.keys():
key = key+0.01
data_store[key] =datum
arr_store[key] = str(arangement)+" False"
if j ==0:
datum = cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=True,
param_open=opening, param_close = closing, param_erosion = erosion)
key = len(list(filter(lambda d: d['Area'] > area_boundary, datum)))
while key in arr_store.keys():
key = key+0.01
data_store[key] = datum
arr_store[key] = str(arangement)+" True"
key = np.max(list(arr_store.keys()))
log.append("Layer "+str(j)+", arrangment: "+arr_store[key])
data.extend(data_store[key])
df = pd.DataFrame(data)
save = os.path.join(save_loc, "nc_measurements_"+os.path.splitext(self.net_images[i])[0]+'.xlsx')
df.to_excel(save)
print("Successfully scraped data. Saving to... ",save)
else:
for i in range(len(self.net_images)):
data = []
imdir = os.path.join(self.save_fold, self.net_images[i])
for j in range(3):
data.extend(cD.layerDetection(imdir, layer=j, cell_only=cell_only, by_nucleus=False))
df = pd.DataFrame(data)
save = os.path.join(save_loc, "nc_measurements_"+os.path.splitext(self.net_images[i])[0]+'.xlsx')
df.to_excel(save)
print("Successfully scraped data. Saving to... ",save)
print(log)
return df
#aims to clean data, by destroying anaomalous results in a given dataset. This function recieves the file location of the dataset as input.
# anomalous results are defined by having highly atypical cell area, perimeter and circularity characterisitics.
def dataCleaner(self,save_loc = None,filename=None,cell_only=True, basal_circularity_bounds=(0.5,1.05), basal_area_bounds = (40,350),
prickle_circularity_bounds = (0.5,1.05),prickle_area_bounds=(60,1400), superficial_circularity_bounds=(0.5,1.05),
superficial_area_bounds=(60,1500), solidity_bound = 0.7):
if save_loc == None:
save_loc = self.save_fold
if not os.path.exists(save_loc):
raise ValueError("Save directory is illegitimate:", save_loc,". Please enter the full filepath of an existing directory containing CellSegmentor's outputs.\n")
if filename != None:
open_ = os.path.join(save_loc, filename)
non_cleaned = [open_]
else:
os.chdir(save_loc)
non_cleaned = glob.glob("*xlsx*")
non_cleaned = [k for k in non_cleaned if 'nc_measurement' in k]
print(non_cleaned)
layers = ['Basal','Prickle','Superficial']
cyto_bounds =[[basal_circularity_bounds,basal_area_bounds],
[prickle_circularity_bounds, prickle_area_bounds],
[superficial_circularity_bounds, superficial_area_bounds]]
nuc_bounds = [[basal_circularity_bounds,(basal_area_bounds[0]/1.5,basal_area_bounds[1])],
[prickle_circularity_bounds, (prickle_area_bounds[0]/1.5, prickle_area_bounds[1]/1.5)],
[superficial_circularity_bounds, (superficial_area_bounds[0]*1.5,superficial_area_bounds[1]/1.5) ]]
for image in non_cleaned:
non_clean = os.path.join(save_loc,image)
df = pd.read_excel( non_clean,index=False)
save_name = os.path.join(save_loc,"clean_data_"+os.path.splitext(image)[0].replace("nc_measurements_","")+'.xlsx')
cell_store = {'Basal':0, 'Prickle':0, 'Superficial':0}
for i,layer in enumerate(layers):
cells = df[(df['Layer']==layer) & (df['Type'] == 'cell')]
cells.reset_index(drop=True, inplace=True)
cells = cells[(cells['Circularity']>cyto_bounds[i][0][0]) & (cells['Circularity']<cyto_bounds[i][0][1])]
cells = cells[(cells['Area']>cyto_bounds[i][1][0]) & (cells['Area']<cyto_bounds[i][1][1])]
cells = cells[(cells['Circularity']>cyto_bounds[i][0][0]*1.1) & (cells['Area']<cyto_bounds[i][1][1]*0.9)]
cells = cells[(cells['Circularity']<cyto_bounds[i][0][1]*0.9) & (cells['Area']>cyto_bounds[i][1][0]*1.1)]
cells = cells[((cells['Solidity']>solidity_bound) | (cells['Area']> 2*cyto_bounds[i][1][0]))]
cell_store[layer] = cells
if not cell_only:
nuclei_store = {'Basal':0, 'Prickle':0, 'Superficial':0}
for i,layer in enumerate(layers):
nuclei = df[(df['Layer']==layer) & (df['Type'] == 'nucleus')]
nuclei.reset_index(drop=True, inplace=True)
nuclei = nuclei[(nuclei['Circularity']>nuc_bounds[i][0][0]) & (nuclei['Circularity']<nuc_bounds[i][0][1])]
nuclei = nuclei[(nuclei['Area']>nuc_bounds[i][1][0]) & (nuclei['Area']<nuc_bounds[i][1][1])]
nuclei = nuclei[(nuclei['Circularity']>nuc_bounds[i][0][0]*1.1) & (nuclei['Area']<nuc_bounds[i][1][1]*0.9)]
nuclei = nuclei[(nuclei['Circularity']<nuc_bounds[i][0][1]*0.9) & (nuclei['Area']>nuc_bounds[i][1][0]*1.1)]
nuclei = nuclei[((nuclei['Solidity']>solidity_bound) | (nuclei['Area']> 2*cyto_bounds[i][1][0]))]
nuclei_store[layer] = nuclei
frames = list(cell_store.values())+list(nuclei_store.values())
else:
frames = list(cell_store.values())
output_df = pd.concat(frames)
output_df.to_excel(save_name)
os.remove(non_clean)
if __name__ == '__main__':
output_loc = "C:\\Users\\Billy\\Downloads\\Prepared_SVS"
picLoc = os.path.join(output_loc, 'predicted_cropped_Normal buccal mucosa_0_mag20.png')
cD = CellDetector(output_loc)
time.sleep(2)
cD.predictOne(picLoc)
cD.predictAll(output_loc, isOpt=True, cell_only=False)
cD.layerDetection(picLoc,layer=0, plot=['AI','Watershed','Original','Binary'],
by_nucleus=False, cell_only=True,subplot_shape=(2,2),
param_open=0, param_erosion = 3, param_close = 0)
data = cD.dataCleaner(output_loc, cell_only=False)