|
a |
|
b/trainer.py |
|
|
1 |
import os |
|
|
2 |
from typing import List, Dict, Type |
|
|
3 |
import math |
|
|
4 |
import torch |
|
|
5 |
from torch.optim import Optimizer |
|
|
6 |
import transformers |
|
|
7 |
import torch.nn as nn |
|
|
8 |
from PathBLIP.dataset import ImageTextContrastiveCollator |
|
|
9 |
from tqdm import tqdm |
|
|
10 |
WEIGHTS_NAME = "pytorch_model.bin" |
|
|
11 |
|
|
|
12 |
class Trainer: |
|
|
13 |
'''trainer for single-gpu training. |
|
|
14 |
''' |
|
|
15 |
def __init__(self, args=None): |
|
|
16 |
pass |
|
|
17 |
|
|
|
18 |
def train(self, |
|
|
19 |
model, |
|
|
20 |
train_dataset, |
|
|
21 |
eval_dataset, |
|
|
22 |
local_rank, |
|
|
23 |
epochs: int = 1, |
|
|
24 |
scheduler: str = 'WarmupCosine', |
|
|
25 |
warmup_steps: int = 10000, |
|
|
26 |
warmup_ratio: float = 0.01, |
|
|
27 |
output_path: str = './checkpoints/vision_text_pretrain', |
|
|
28 |
optimizer_class: Type[Optimizer] = torch.optim.AdamW, |
|
|
29 |
optimizer_params : Dict[str, object]= {'lr': 2e-5}, |
|
|
30 |
weight_decay: float = 0.01, |
|
|
31 |
max_grad_norm: float = 1, |
|
|
32 |
use_amp: bool = False, |
|
|
33 |
accumulation_steps: int = 1, |
|
|
34 |
): |
|
|
35 |
''' |
|
|
36 |
output_path: model save path |
|
|
37 |
checkpoint_path: model load and continue to learn path |
|
|
38 |
''' |
|
|
39 |
self.accumulation_steps = accumulation_steps |
|
|
40 |
if use_amp: |
|
|
41 |
from torch.cuda.amp import autocast |
|
|
42 |
scaler = torch.cuda.amp.GradScaler() |
|
|
43 |
|
|
|
44 |
train_collate_fn = ImageTextContrastiveCollator() |
|
|
45 |
|
|
|
46 |
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), device_ids=[local_rank], output_device=local_rank,find_unused_parameters=True) |
|
|
47 |
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) |
|
|
48 |
dataloader = torch.utils.data.DataLoader(train_dataset, shuffle=False, pin_memory=True, num_workers=4, |
|
|
49 |
batch_size=36, drop_last=True, collate_fn=train_collate_fn, sampler=train_sampler) |
|
|
50 |
|
|
|
51 |
steps_per_epoch = len(dataloader) |
|
|
52 |
num_train_steps = int((steps_per_epoch) * epochs) |
|
|
53 |
warmup_steps = math.ceil(num_train_steps * warmup_ratio) #10% of train data for warm-up |
|
|
54 |
|
|
|
55 |
# Prepare optimizers |
|
|
56 |
param_optimizer = list(model.named_parameters()) |
|
|
57 |
|
|
|
58 |
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] |
|
|
59 |
optimizer_grouped_parameters = [ |
|
|
60 |
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': weight_decay}, |
|
|
61 |
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} |
|
|
62 |
] |
|
|
63 |
|
|
|
64 |
optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params) |
|
|
65 |
scheduler = self._get_scheduler(optimizer, scheduler=scheduler, warmup_steps=warmup_steps, t_total=num_train_steps) |
|
|
66 |
|
|
|
67 |
|
|
|
68 |
skip_scheduler = False |
|
|
69 |
for epoch in range(epochs): |
|
|
70 |
data_iterator = iter(dataloader) |
|
|
71 |
with tqdm(total=steps_per_epoch, disable= local_rank != 0) as pbar: |
|
|
72 |
for train_iter in range(steps_per_epoch): |
|
|
73 |
model.zero_grad() |
|
|
74 |
model.train() |
|
|
75 |
data = next(data_iterator) |
|
|
76 |
data['image'] = data['image'].cuda() |
|
|
77 |
if use_amp: |
|
|
78 |
with autocast(): |
|
|
79 |
loss = model(data) |
|
|
80 |
loss_value = loss['loss'] |
|
|
81 |
scale_before_step = scaler.get_scale() |
|
|
82 |
scaler.scale(loss_value).backward() |
|
|
83 |
scaler.unscale_(optimizer) |
|
|
84 |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) |
|
|
85 |
scaler.step(optimizer) |
|
|
86 |
scaler.update() |
|
|
87 |
skip_scheduler = scaler.get_scale() != scale_before_step |
|
|
88 |
else: |
|
|
89 |
loss = model(data) |
|
|
90 |
loss_value = loss['loss'] / self.accumulation_steps |
|
|
91 |
loss_value.backward() |
|
|
92 |
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm) |
|
|
93 |
optimizer.step() |
|
|
94 |
# pbar.set_postfix('Epoch[{}/{}]/Iter[{}/{}]: loss: {:.4f}'.format(epoch,epochs,train_iter,steps_per_epoch,loss_value)) # 输入一个字典,显示实验指标 |
|
|
95 |
# tqdm.write('Epoch[{}/{}]/Iter[{}/{}]: loss: {:.4f}'.format(epoch,epochs,train_iter,steps_per_epoch,loss_value), end="\r") |
|
|
96 |
pbar.set_description(f"Epoch {epoch+1}/{epochs}, Batch {train_iter}/{steps_per_epoch} - Loss: {loss_value:.4f}") |
|
|
97 |
pbar.update(1) # 更新进度条 |
|
|
98 |
# pbar.update(1) |
|
|
99 |
# print('Epoch[{}/{}]/Iter[{}/{}]: loss: {:.4f}'.format(epoch,epochs,train_iter,steps_per_epoch,loss_value)) |
|
|
100 |
|
|
|
101 |
|
|
|
102 |
optimizer.zero_grad() |
|
|
103 |
|
|
|
104 |
if not skip_scheduler: |
|
|
105 |
scheduler.step() |
|
|
106 |
if local_rank == 0: |
|
|
107 |
self._save_ckpt(model,epoch,output_path) |
|
|
108 |
|
|
|
109 |
|
|
|
110 |
@staticmethod |
|
|
111 |
def _get_scheduler(optimizer, scheduler: str, warmup_steps: int, t_total: int): |
|
|
112 |
""" |
|
|
113 |
Returns the correct learning rate scheduler. Available scheduler: constantlr, warmupconstant, warmuplinear, warmupcosine, warmupcosinewithhardrestarts |
|
|
114 |
""" |
|
|
115 |
scheduler = scheduler.lower() |
|
|
116 |
if scheduler == 'constantlr': |
|
|
117 |
return transformers.get_constant_schedule(optimizer) |
|
|
118 |
elif scheduler == 'warmupconstant': |
|
|
119 |
return transformers.get_constant_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps) |
|
|
120 |
elif scheduler == 'warmuplinear': |
|
|
121 |
return transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) |
|
|
122 |
elif scheduler == 'warmupcosine': |
|
|
123 |
return transformers.get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) |
|
|
124 |
elif scheduler == 'warmupcosinewithhardrestarts': |
|
|
125 |
return transformers.get_cosine_with_hard_restarts_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=t_total) |
|
|
126 |
else: |
|
|
127 |
raise ValueError("Unknown scheduler {}".format(scheduler)) |
|
|
128 |
|
|
|
129 |
def _save_ckpt(self, model, epoch, save_dir): |
|
|
130 |
if not os.path.exists(save_dir): |
|
|
131 |
os.makedirs(save_dir) |
|
|
132 |
state_dict = model.state_dict() |
|
|
133 |
torch.save(state_dict, os.path.join(save_dir, 'epoch{}.pth'.format(epoch))) |
|
|
134 |
print("Save: ", os.path.join(save_dir, 'epoch{}.pth'.format(epoch))) |