|
a |
|
b/lavis/tasks/vqa.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2022, salesforce.com, inc. |
|
|
3 |
All rights reserved. |
|
|
4 |
SPDX-License-Identifier: BSD-3-Clause |
|
|
5 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import logging |
|
|
9 |
import json |
|
|
10 |
import os |
|
|
11 |
|
|
|
12 |
import lavis.common.dist_utils as dist_utils |
|
|
13 |
from lavis.common.registry import registry |
|
|
14 |
from lavis.common.vqa_tools.vqa import VQA |
|
|
15 |
from lavis.common.vqa_tools.vqa_eval import VQAEval |
|
|
16 |
from lavis.tasks.base_task import BaseTask |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
@registry.register_task("vqa") |
|
|
20 |
class VQATask(BaseTask): |
|
|
21 |
def __init__( |
|
|
22 |
self, |
|
|
23 |
num_beams, |
|
|
24 |
max_len, |
|
|
25 |
min_len, |
|
|
26 |
evaluate, |
|
|
27 |
num_ans_candidates, |
|
|
28 |
inference_method="rank", |
|
|
29 |
prompt="", |
|
|
30 |
): |
|
|
31 |
super().__init__() |
|
|
32 |
|
|
|
33 |
self.num_beams = num_beams |
|
|
34 |
self.max_len = max_len |
|
|
35 |
self.min_len = min_len |
|
|
36 |
|
|
|
37 |
self.evaluate = evaluate |
|
|
38 |
self.inference_method = inference_method |
|
|
39 |
self.num_ans_candidates = num_ans_candidates |
|
|
40 |
self.prompt = prompt |
|
|
41 |
|
|
|
42 |
self.answer_list = None |
|
|
43 |
|
|
|
44 |
self.ques_files = dict() |
|
|
45 |
self.anno_files = dict() |
|
|
46 |
|
|
|
47 |
@classmethod |
|
|
48 |
def setup_task(cls, cfg): |
|
|
49 |
run_cfg = cfg.run_cfg |
|
|
50 |
|
|
|
51 |
num_beams = run_cfg.get("num_beams", 3) |
|
|
52 |
max_len = run_cfg.get("max_len", 10) |
|
|
53 |
min_len = run_cfg.get("min_len", 1) |
|
|
54 |
|
|
|
55 |
evaluate = run_cfg.get("evaluate", False) |
|
|
56 |
|
|
|
57 |
inference_method = run_cfg.get("inference_method", "rank") |
|
|
58 |
num_ans_candidates = run_cfg.get("num_ans_candidates", 128) |
|
|
59 |
prompt = run_cfg.get("prompt", "") |
|
|
60 |
|
|
|
61 |
return cls( |
|
|
62 |
num_beams=num_beams, |
|
|
63 |
max_len=max_len, |
|
|
64 |
min_len=min_len, |
|
|
65 |
evaluate=evaluate, |
|
|
66 |
num_ans_candidates=num_ans_candidates, |
|
|
67 |
inference_method=inference_method, |
|
|
68 |
prompt=prompt, |
|
|
69 |
) |
|
|
70 |
|
|
|
71 |
def build_datasets(self, cfg): |
|
|
72 |
datasets = super().build_datasets(cfg) |
|
|
73 |
|
|
|
74 |
# get question file, annotation file and anwser list in COCO format |
|
|
75 |
for dataset in datasets.values(): |
|
|
76 |
for split in dataset: |
|
|
77 |
if ( |
|
|
78 |
hasattr(dataset[split], "coco_fmt_qust_file") |
|
|
79 |
and dataset[split].coco_fmt_qust_file is not None |
|
|
80 |
): |
|
|
81 |
self.ques_files[split] = dataset[split].coco_fmt_qust_file |
|
|
82 |
self.anno_files[split] = dataset[split].coco_fmt_anno_file |
|
|
83 |
|
|
|
84 |
try: |
|
|
85 |
self.answer_list = dataset[split].answer_list |
|
|
86 |
except AttributeError: |
|
|
87 |
# if answer_list is not provided, then set it to None |
|
|
88 |
pass |
|
|
89 |
|
|
|
90 |
if len(self.ques_files) > 0: |
|
|
91 |
assert len(self.ques_files) == len( |
|
|
92 |
self.anno_files |
|
|
93 |
), "Only support one split for evaluation." |
|
|
94 |
|
|
|
95 |
return datasets |
|
|
96 |
|
|
|
97 |
def valid_step(self, model, samples): |
|
|
98 |
answers = model.predict_answers( |
|
|
99 |
samples=samples, |
|
|
100 |
answer_list=self.answer_list, |
|
|
101 |
inference_method=self.inference_method, |
|
|
102 |
num_beams=self.num_beams, |
|
|
103 |
max_len=self.max_len, |
|
|
104 |
min_len=self.min_len, |
|
|
105 |
num_ans_candidates=self.num_ans_candidates, |
|
|
106 |
prompt=self.prompt, |
|
|
107 |
) |
|
|
108 |
pred_qa_pairs = [] |
|
|
109 |
|
|
|
110 |
question_id = samples["text_output"] |
|
|
111 |
for ques, answer, ques_id in zip(samples['text_input'], answers, question_id): |
|
|
112 |
# ques_id = int(ques_id.item()) |
|
|
113 |
pred_qa_pairs.append({"question": ques, "question_ans": ques_id, "predict_ans": answer}) |
|
|
114 |
print("Question: ", ques) |
|
|
115 |
print("Predict_ans: ", answer) |
|
|
116 |
print("Question_ans: ", ques_id) |
|
|
117 |
print("####################") |
|
|
118 |
|
|
|
119 |
|
|
|
120 |
return pred_qa_pairs |
|
|
121 |
|
|
|
122 |
def after_evaluation(self, val_result, split_name, **kwargs): |
|
|
123 |
result_file = self.save_result( |
|
|
124 |
val_result, |
|
|
125 |
result_dir=registry.get_path("result_dir"), |
|
|
126 |
filename=f"{split_name}_vqa_result", |
|
|
127 |
remove_duplicate="question_id", |
|
|
128 |
) |
|
|
129 |
|
|
|
130 |
metrics = self._report_metrics(result_file=result_file, split=split_name) |
|
|
131 |
|
|
|
132 |
return metrics |
|
|
133 |
|
|
|
134 |
@dist_utils.main_process |
|
|
135 |
def _report_metrics(self, result_file, split): |
|
|
136 |
""" |
|
|
137 |
Use official VQA evaluation script to report metrics. |
|
|
138 |
""" |
|
|
139 |
metrics = {} |
|
|
140 |
|
|
|
141 |
if split in self.ques_files and split in self.anno_files: |
|
|
142 |
vqa = VQA(self.anno_files[split], self.ques_files[split]) |
|
|
143 |
vqa_result = vqa.loadRes( |
|
|
144 |
resFile=result_file, quesFile=self.ques_files[split] |
|
|
145 |
) |
|
|
146 |
|
|
|
147 |
# create vqaEval object by taking vqa and vqaRes |
|
|
148 |
# n is precision of accuracy (number of places after decimal), default is 2 |
|
|
149 |
vqa_scorer = VQAEval(vqa, vqa_result, n=2) |
|
|
150 |
logging.info("Start VQA evaluation.") |
|
|
151 |
vqa_scorer.evaluate() |
|
|
152 |
|
|
|
153 |
# print accuracies |
|
|
154 |
overall_acc = vqa_scorer.accuracy["overall"] |
|
|
155 |
metrics["agg_metrics"] = overall_acc |
|
|
156 |
|
|
|
157 |
logging.info("Overall Accuracy is: %.02f\n" % overall_acc) |
|
|
158 |
logging.info("Per Answer Type Accuracy is the following:") |
|
|
159 |
|
|
|
160 |
for ans_type in vqa_scorer.accuracy["perAnswerType"]: |
|
|
161 |
logging.info( |
|
|
162 |
"%s : %.02f" |
|
|
163 |
% (ans_type, vqa_scorer.accuracy["perAnswerType"][ans_type]) |
|
|
164 |
) |
|
|
165 |
metrics[ans_type] = vqa_scorer.accuracy["perAnswerType"][ans_type] |
|
|
166 |
|
|
|
167 |
with open( |
|
|
168 |
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
|
169 |
) as f: |
|
|
170 |
f.write(json.dumps(metrics) + "\n") |
|
|
171 |
|
|
|
172 |
return metrics |
|
|
173 |
|
|
|
174 |
@registry.register_task("gqa") |
|
|
175 |
class GQATask(VQATask): |
|
|
176 |
def valid_step(self, model, samples): |
|
|
177 |
answers = model.predict_answers( |
|
|
178 |
samples=samples, |
|
|
179 |
answer_list=self.answer_list, |
|
|
180 |
inference_method=self.inference_method, |
|
|
181 |
num_beams=self.num_beams, |
|
|
182 |
max_len=self.max_len, |
|
|
183 |
min_len=self.min_len, |
|
|
184 |
num_ans_candidates=self.num_ans_candidates, |
|
|
185 |
prompt=self.prompt, |
|
|
186 |
) |
|
|
187 |
pred_qa_pairs = [] |
|
|
188 |
|
|
|
189 |
question_id = samples["question_id"] |
|
|
190 |
gt_answers = samples["answer"] |
|
|
191 |
|
|
|
192 |
for answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): |
|
|
193 |
ques_id = int(ques_id.item()) |
|
|
194 |
pred_qa_pairs.append({"question_id": ques_id, "pred_ans": answer, "gt_ans": gt_answer}) |
|
|
195 |
|
|
|
196 |
return pred_qa_pairs |
|
|
197 |
|
|
|
198 |
@dist_utils.main_process |
|
|
199 |
def _report_metrics(self, result_file, split): |
|
|
200 |
""" |
|
|
201 |
TODO: add other evaluation metrics for GQA |
|
|
202 |
""" |
|
|
203 |
|
|
|
204 |
results = json.load(open(result_file, "r")) |
|
|
205 |
acc = [] |
|
|
206 |
vqa_tool = VQAEval() |
|
|
207 |
|
|
|
208 |
for res in results: |
|
|
209 |
if res["gt_ans"] is None: |
|
|
210 |
# prepare test results for leaderboard evaluation |
|
|
211 |
self._save_result_leaderboard(results) |
|
|
212 |
return |
|
|
213 |
|
|
|
214 |
gt_ans = res["gt_ans"] |
|
|
215 |
pred = res["pred_ans"] |
|
|
216 |
|
|
|
217 |
# if self.inference_method == "generate": |
|
|
218 |
pred = vqa_tool.processPunctuation(pred) |
|
|
219 |
pred = vqa_tool.processDigitArticle(pred) |
|
|
220 |
|
|
|
221 |
vqa_acc = 1 if pred == gt_ans else 0 |
|
|
222 |
|
|
|
223 |
acc.append(vqa_acc) |
|
|
224 |
|
|
|
225 |
accuracy = sum(acc) / len(acc) * 100 |
|
|
226 |
metrics = {"agg_metrics": accuracy, "acc": accuracy} |
|
|
227 |
|
|
|
228 |
with open( |
|
|
229 |
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
|
230 |
) as f: |
|
|
231 |
f.write(json.dumps(metrics) + "\n") |
|
|
232 |
|
|
|
233 |
logging.info(metrics) |
|
|
234 |
|
|
|
235 |
return metrics |
|
|
236 |
|
|
|
237 |
|
|
|
238 |
@registry.register_task("aok_vqa") |
|
|
239 |
class AOKVQATask(VQATask): |
|
|
240 |
def valid_step(self, model, samples): |
|
|
241 |
answers = model.predict_answers( |
|
|
242 |
samples=samples, |
|
|
243 |
answer_list=self.answer_list, |
|
|
244 |
inference_method=self.inference_method, |
|
|
245 |
num_beams=self.num_beams, |
|
|
246 |
max_len=self.max_len, |
|
|
247 |
min_len=self.min_len, |
|
|
248 |
num_ans_candidates=self.num_ans_candidates, |
|
|
249 |
) |
|
|
250 |
|
|
|
251 |
pred_qa_pairs = [] |
|
|
252 |
|
|
|
253 |
question_id = samples["question_id"] |
|
|
254 |
gt_answers = samples["direct_answers"] |
|
|
255 |
|
|
|
256 |
for pred_answer, ques_id, gt_answer in zip(answers, question_id, gt_answers): |
|
|
257 |
pred_qa_pairs.append( |
|
|
258 |
{"question_id": ques_id, "pred_ans": pred_answer, "gt_ans": gt_answer} |
|
|
259 |
) |
|
|
260 |
|
|
|
261 |
return pred_qa_pairs |
|
|
262 |
|
|
|
263 |
@dist_utils.main_process |
|
|
264 |
def _report_metrics(self, result_file, split): |
|
|
265 |
""" |
|
|
266 |
Implementing accuracy computation for AOKVQA, see |
|
|
267 |
https://github.com/allenai/aokvqa/blob/main/evaluation/eval_predictions.py#L45 for details. |
|
|
268 |
""" |
|
|
269 |
# TODO add evaluation for multi-choice |
|
|
270 |
|
|
|
271 |
results = json.load(open(result_file, "r")) |
|
|
272 |
acc = [] |
|
|
273 |
|
|
|
274 |
for res in results: |
|
|
275 |
if res["gt_ans"] is None: |
|
|
276 |
# prepare test results for leaderboard evaluation |
|
|
277 |
self._save_result_leaderboard(results) |
|
|
278 |
return |
|
|
279 |
|
|
|
280 |
pred = res["pred_ans"] |
|
|
281 |
gt_ans = res["gt_ans"] |
|
|
282 |
|
|
|
283 |
num_match = sum([pred == gt for gt in gt_ans]) |
|
|
284 |
vqa_acc = min(1.0, num_match / 3.0) |
|
|
285 |
|
|
|
286 |
acc.append(vqa_acc) |
|
|
287 |
|
|
|
288 |
accuracy = sum(acc) / len(acc) * 100 |
|
|
289 |
metrics = {"agg_metrics": accuracy, "acc": accuracy} |
|
|
290 |
|
|
|
291 |
with open( |
|
|
292 |
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
|
293 |
) as f: |
|
|
294 |
f.write(json.dumps(metrics) + "\n") |
|
|
295 |
|
|
|
296 |
logging.info(metrics) |
|
|
297 |
|
|
|
298 |
return metrics |
|
|
299 |
|
|
|
300 |
@dist_utils.main_process |
|
|
301 |
def _save_result_leaderboard(self, results): |
|
|
302 |
""" |
|
|
303 |
Saving the results in the format required for leaderboard evaluation. |
|
|
304 |
|
|
|
305 |
[TODO] add support for multi-choice. |
|
|
306 |
""" |
|
|
307 |
result_leaderboard = dict() |
|
|
308 |
for res in results: |
|
|
309 |
result_leaderboard[res["question_id"]] = { |
|
|
310 |
"direct_answer": res["pred_ans"], |
|
|
311 |
"multiple_choice": "", |
|
|
312 |
} |
|
|
313 |
|
|
|
314 |
result_file = registry.get_path("result_dir") + "_leaderboard.json" |
|
|
315 |
|
|
|
316 |
with open(result_file, "w") as f: |
|
|
317 |
json.dump(result_leaderboard, f) |
|
|
318 |
|
|
|
319 |
logging.info(f"Saved results for leaderboard evaluation at {result_file}") |