|
a |
|
b/lavis/tasks/captioning.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2022, salesforce.com, inc. |
|
|
3 |
All rights reserved. |
|
|
4 |
SPDX-License-Identifier: BSD-3-Clause |
|
|
5 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import json |
|
|
9 |
import os |
|
|
10 |
|
|
|
11 |
from lavis.common.dist_utils import main_process |
|
|
12 |
from lavis.common.registry import registry |
|
|
13 |
from lavis.tasks.base_task import BaseTask |
|
|
14 |
|
|
|
15 |
|
|
|
16 |
@registry.register_task("captioning") |
|
|
17 |
class CaptionTask(BaseTask): |
|
|
18 |
def __init__(self, num_beams, max_len, min_len, evaluate, report_metric=True): |
|
|
19 |
super().__init__() |
|
|
20 |
|
|
|
21 |
self.num_beams = num_beams |
|
|
22 |
self.max_len = max_len |
|
|
23 |
self.min_len = min_len |
|
|
24 |
self.evaluate = evaluate |
|
|
25 |
|
|
|
26 |
self.report_metric = report_metric |
|
|
27 |
|
|
|
28 |
@classmethod |
|
|
29 |
def setup_task(cls, cfg): |
|
|
30 |
run_cfg = cfg.run_cfg |
|
|
31 |
|
|
|
32 |
num_beams = run_cfg.num_beams |
|
|
33 |
max_len = run_cfg.max_len |
|
|
34 |
min_len = run_cfg.min_len |
|
|
35 |
evaluate = run_cfg.evaluate |
|
|
36 |
|
|
|
37 |
report_metric = run_cfg.get("report_metric", True) |
|
|
38 |
|
|
|
39 |
return cls( |
|
|
40 |
num_beams=num_beams, |
|
|
41 |
max_len=max_len, |
|
|
42 |
min_len=min_len, |
|
|
43 |
evaluate=evaluate, |
|
|
44 |
report_metric=report_metric, |
|
|
45 |
) |
|
|
46 |
|
|
|
47 |
def valid_step(self, model, samples): |
|
|
48 |
results = [] |
|
|
49 |
|
|
|
50 |
# run_cfg = slf.cfg.run_cfg |
|
|
51 |
captions = model.generate( |
|
|
52 |
samples, |
|
|
53 |
use_nucleus_sampling=False, |
|
|
54 |
num_beams=self.num_beams, |
|
|
55 |
max_length=self.max_len, |
|
|
56 |
min_length=self.min_len, |
|
|
57 |
) |
|
|
58 |
|
|
|
59 |
img_ids = samples["image_id"] |
|
|
60 |
for caption, img_id in zip(captions, img_ids): |
|
|
61 |
results.append({"caption": caption, "image_id": int(img_id)}) |
|
|
62 |
|
|
|
63 |
return results |
|
|
64 |
|
|
|
65 |
def after_evaluation(self, val_result, split_name, epoch, **kwargs): |
|
|
66 |
eval_result_file = self.save_result( |
|
|
67 |
result=val_result, |
|
|
68 |
result_dir=registry.get_path("result_dir"), |
|
|
69 |
filename="{}_epoch{}".format(split_name, epoch), |
|
|
70 |
remove_duplicate="image_id", |
|
|
71 |
) |
|
|
72 |
|
|
|
73 |
if self.report_metric: |
|
|
74 |
metrics = self._report_metrics( |
|
|
75 |
eval_result_file=eval_result_file, split_name=split_name |
|
|
76 |
) |
|
|
77 |
else: |
|
|
78 |
metrics = {"agg_metrics": 0.0} |
|
|
79 |
|
|
|
80 |
return metrics |
|
|
81 |
|
|
|
82 |
@main_process |
|
|
83 |
def _report_metrics(self, eval_result_file, split_name): |
|
|
84 |
|
|
|
85 |
# TODO better way to define this |
|
|
86 |
coco_gt_root = os.path.join(registry.get_path("cache_root"), "coco_gt") |
|
|
87 |
coco_val = coco_caption_eval(coco_gt_root, eval_result_file, split_name) |
|
|
88 |
|
|
|
89 |
agg_metrics = coco_val.eval["CIDEr"] + coco_val.eval["Bleu_4"] |
|
|
90 |
log_stats = {split_name: {k: v for k, v in coco_val.eval.items()}} |
|
|
91 |
|
|
|
92 |
with open( |
|
|
93 |
os.path.join(registry.get_path("output_dir"), "evaluate.txt"), "a" |
|
|
94 |
) as f: |
|
|
95 |
f.write(json.dumps(log_stats) + "\n") |
|
|
96 |
|
|
|
97 |
coco_res = {k: v for k, v in coco_val.eval.items()} |
|
|
98 |
coco_res["agg_metrics"] = agg_metrics |
|
|
99 |
|
|
|
100 |
return coco_res |
|
|
101 |
|
|
|
102 |
|
|
|
103 |
# TODO better structure for this. |
|
|
104 |
from pycocoevalcap.eval import COCOEvalCap |
|
|
105 |
from pycocotools.coco import COCO |
|
|
106 |
from torchvision.datasets.utils import download_url |
|
|
107 |
|
|
|
108 |
|
|
|
109 |
def coco_caption_eval(coco_gt_root, results_file, split): |
|
|
110 |
urls = { |
|
|
111 |
"val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val_gt.json", |
|
|
112 |
"test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test_gt.json", |
|
|
113 |
} |
|
|
114 |
filenames = { |
|
|
115 |
"val": "coco_karpathy_val_gt.json", |
|
|
116 |
"test": "coco_karpathy_test_gt.json", |
|
|
117 |
} |
|
|
118 |
|
|
|
119 |
download_url(urls[split], coco_gt_root) |
|
|
120 |
annotation_file = os.path.join(coco_gt_root, filenames[split]) |
|
|
121 |
|
|
|
122 |
# create coco object and coco_result object |
|
|
123 |
coco = COCO(annotation_file) |
|
|
124 |
coco_result = coco.loadRes(results_file) |
|
|
125 |
|
|
|
126 |
# create coco_eval object by taking coco and coco_result |
|
|
127 |
coco_eval = COCOEvalCap(coco, coco_result) |
|
|
128 |
|
|
|
129 |
# evaluate on a subset of images by setting |
|
|
130 |
# coco_eval.params['image_id'] = coco_result.getImgIds() |
|
|
131 |
# please remove this line when evaluating the full validation set |
|
|
132 |
# coco_eval.params['image_id'] = coco_result.getImgIds() |
|
|
133 |
|
|
|
134 |
# evaluate results |
|
|
135 |
# SPICE will take a few minutes the first time, but speeds up due to caching |
|
|
136 |
coco_eval.evaluate() |
|
|
137 |
|
|
|
138 |
# print output evaluation scores |
|
|
139 |
for metric, score in coco_eval.eval.items(): |
|
|
140 |
print(f"{metric}: {score:.3f}") |
|
|
141 |
|
|
|
142 |
return coco_eval |