--- a +++ b/lavis/tasks/base_task.py @@ -0,0 +1,290 @@ +""" + Copyright (c) 2022, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" + +import logging +import os + +import torch +import torch.distributed as dist +from lavis.common.dist_utils import get_rank, get_world_size, is_main_process, is_dist_avail_and_initialized +from lavis.common.logger import MetricLogger, SmoothedValue +from lavis.common.registry import registry +from lavis.datasets.data_utils import prepare_sample + + +class BaseTask: + def __init__(self, **kwargs): + super().__init__() + + self.inst_id_key = "instance_id" + + @classmethod + def setup_task(cls, **kwargs): + return cls() + + def build_model(self, cfg): + model_config = cfg.model_cfg + + model_cls = registry.get_model_class(model_config.arch) + return model_cls.from_config(model_config) + + def build_datasets(self, cfg): + """ + Build a dictionary of datasets, keyed by split 'train', 'valid', 'test'. + Download dataset and annotations automatically if not exist. + + Args: + cfg (common.config.Config): _description_ + + Returns: + dict: Dictionary of torch.utils.data.Dataset objects by split. + """ + + datasets = dict() + + datasets_config = cfg.datasets_cfg + + assert len(datasets_config) > 0, "At least one dataset has to be specified." + + for name in datasets_config: + dataset_config = datasets_config[name] + + builder = registry.get_builder_class(name)(dataset_config) + dataset = builder.build_datasets() + + datasets[name] = dataset + + return datasets + + def train_step(self, model, samples): + output = model(samples) + loss_dict = {} + for k,v in output.items(): + if "loss" in k: + loss_dict[k] = v + return output["loss"], loss_dict + + def valid_step(self, model, samples): + raise NotImplementedError + + def before_training(self, model, dataset, **kwargs): + model.before_training(dataset=dataset, task_type=type(self)) + + def before_evaluation(self, model, dataset, **kwargs): + model.before_evaluation(dataset=dataset, task_type=type(self)) + + def after_evaluation(self, **kwargs): + pass + + def inference_step(self): + raise NotImplementedError + + def evaluation(self, model, data_loader, cuda_enabled=True): + metric_logger = MetricLogger(delimiter=" ") + header = "Evaluation" + # TODO make it configurable + print_freq = 10 + + results = [] + + for samples in metric_logger.log_every(data_loader, print_freq, header): + samples = prepare_sample(samples, cuda_enabled=cuda_enabled) + + eval_output = self.valid_step(model=model, samples=samples) + results.extend(eval_output) + + if is_dist_avail_and_initialized(): + dist.barrier() + + return results + + def train_epoch( + self, + epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + cuda_enabled=False, + log_freq=50, + accum_grad_iters=1, + ): + return self._train_inner_loop( + epoch=epoch, + iters_per_epoch=len(data_loader), + model=model, + data_loader=data_loader, + optimizer=optimizer, + scaler=scaler, + lr_scheduler=lr_scheduler, + log_freq=log_freq, + cuda_enabled=cuda_enabled, + accum_grad_iters=accum_grad_iters, + ) + + def train_iters( + self, + epoch, + start_iters, + iters_per_inner_epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + cuda_enabled=False, + log_freq=50, + accum_grad_iters=1, + ): + return self._train_inner_loop( + epoch=epoch, + start_iters=start_iters, + iters_per_epoch=iters_per_inner_epoch, + model=model, + data_loader=data_loader, + optimizer=optimizer, + scaler=scaler, + lr_scheduler=lr_scheduler, + log_freq=log_freq, + cuda_enabled=cuda_enabled, + accum_grad_iters=accum_grad_iters, + ) + + def _train_inner_loop( + self, + epoch, + iters_per_epoch, + model, + data_loader, + optimizer, + lr_scheduler, + scaler=None, + start_iters=None, + log_freq=50, + cuda_enabled=False, + accum_grad_iters=1, + ): + """ + An inner training loop compatible with both epoch-based and iter-based training. + + When using epoch-based, training stops after one epoch; when using iter-based, + training stops after #iters_per_epoch iterations. + """ + use_amp = scaler is not None + + if not hasattr(data_loader, "__next__"): + # convert to iterator if not already + data_loader = iter(data_loader) + + metric_logger = MetricLogger(delimiter=" ") + metric_logger.add_meter("lr", SmoothedValue(window_size=1, fmt="{value:.6f}")) + metric_logger.add_meter("loss", SmoothedValue(window_size=1, fmt="{value:.4f}")) + + # if iter-based runner, schedule lr based on inner epoch. + logging.info( + "Start training epoch {}, {} iters per inner epoch.".format( + epoch, iters_per_epoch + ) + ) + header = "Train: data epoch: [{}]".format(epoch) + if start_iters is None: + # epoch-based runner + inner_epoch = epoch + else: + # In iter-based runner, we schedule the learning rate based on iterations. + inner_epoch = start_iters // iters_per_epoch + header = header + "; inner epoch [{}]".format(inner_epoch) + + for i in metric_logger.log_every(range(iters_per_epoch), log_freq, header): + # if using iter-based runner, we stop after iters_per_epoch iterations. + if i >= iters_per_epoch: + break + + samples = next(data_loader) + + samples = prepare_sample(samples, cuda_enabled=cuda_enabled) + samples.update( + { + "epoch": inner_epoch, + "num_iters_per_epoch": iters_per_epoch, + "iters": i, + } + ) + + lr_scheduler.step(cur_epoch=inner_epoch, cur_step=i) + + with torch.cuda.amp.autocast(enabled=use_amp): + loss, loss_dict = self.train_step(model=model, samples=samples) + loss /= accum_grad_iters #TODO: not affect loss_dict values for logging + + # after_train_step() + if use_amp: + scaler.scale(loss).backward() + else: + loss.backward() + + # update gradients every accum_grad_iters iterations + if (i + 1) % accum_grad_iters == 0: + if use_amp: + scaler.step(optimizer) + scaler.update() + else: + optimizer.step() + optimizer.zero_grad() + + metric_logger.update(**loss_dict) + metric_logger.update(lr=optimizer.param_groups[0]["lr"]) + + # after train_epoch() + # gather the stats from all processes + metric_logger.synchronize_between_processes() + logging.info("Averaged stats: " + str(metric_logger.global_avg())) + return { + k: "{:.3f}".format(meter.global_avg) + for k, meter in metric_logger.meters.items() + } + + @staticmethod + def save_result(result, result_dir, filename, remove_duplicate=""): + import json + + result_file = os.path.join( + result_dir, "%s_rank%d.json" % (filename, get_rank()) + ) + final_result_file = os.path.join(result_dir, "%s.json" % filename) + + json.dump(result, open(result_file, "w")) + + if is_dist_avail_and_initialized(): + dist.barrier() + + if is_main_process(): + logging.warning("rank %d starts merging results." % get_rank()) + # combine results from all processes + result = [] + + for rank in range(get_world_size()): + result_file = os.path.join( + result_dir, "%s_rank%d.json" % (filename, rank) + ) + res = json.load(open(result_file, "r")) + result += res + + # if remove_duplicate: + # result_new = [] + # id_list = [] + # for res in result: + # if res[remove_duplicate] not in id_list: + # id_list.append(res[remove_duplicate]) + # result_new.append(res) + # result = result_new + + json.dump(result, open(final_result_file, "w"), indent=4) + print("result file saved to %s" % final_result_file) + + return final_result_file