|
a |
|
b/lavis/runners/runner_iter.py |
|
|
1 |
""" |
|
|
2 |
Copyright (c) 2022, salesforce.com, inc. |
|
|
3 |
All rights reserved. |
|
|
4 |
SPDX-License-Identifier: BSD-3-Clause |
|
|
5 |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
|
6 |
""" |
|
|
7 |
|
|
|
8 |
import datetime |
|
|
9 |
import logging |
|
|
10 |
import os |
|
|
11 |
import time |
|
|
12 |
|
|
|
13 |
import torch |
|
|
14 |
import torch.distributed as dist |
|
|
15 |
import webdataset as wds |
|
|
16 |
from lavis.common.dist_utils import download_cached_file, is_main_process, main_process |
|
|
17 |
from lavis.common.registry import registry |
|
|
18 |
from lavis.common.utils import is_url |
|
|
19 |
from lavis.datasets.data_utils import concat_datasets, reorg_datasets_by_split |
|
|
20 |
from lavis.runners.runner_base import RunnerBase |
|
|
21 |
from torch.utils.data.dataset import ChainDataset |
|
|
22 |
|
|
|
23 |
|
|
|
24 |
@registry.register_runner("runner_iter") |
|
|
25 |
class RunnerIter(RunnerBase): |
|
|
26 |
""" |
|
|
27 |
Run training based on the number of iterations. This is common when |
|
|
28 |
the training dataset size is large. Underhood logic is similar to |
|
|
29 |
epoch-based training by considering every #iters_per_inner_epoch as an |
|
|
30 |
inner epoch. |
|
|
31 |
|
|
|
32 |
In iter-based runner, after every #iters_per_inner_epoch steps, we |
|
|
33 |
|
|
|
34 |
1) do a validation epoch; |
|
|
35 |
2) schedule the learning rate; |
|
|
36 |
3) save the checkpoint. |
|
|
37 |
|
|
|
38 |
We refer every #iters_per_inner_epoch steps as an inner epoch. |
|
|
39 |
""" |
|
|
40 |
|
|
|
41 |
def __init__(self, cfg, task, model, datasets, job_id): |
|
|
42 |
super().__init__(cfg, task, model, datasets, job_id) |
|
|
43 |
|
|
|
44 |
self.start_iters = 0 |
|
|
45 |
|
|
|
46 |
self.max_iters = int(self.config.run_cfg.get("max_iters", -1)) |
|
|
47 |
assert self.max_iters > 0, "max_iters must be greater than 0." |
|
|
48 |
|
|
|
49 |
self.iters_per_inner_epoch = int( |
|
|
50 |
self.config.run_cfg.get("iters_per_inner_epoch", -1) |
|
|
51 |
) |
|
|
52 |
assert ( |
|
|
53 |
self.iters_per_inner_epoch > 0 |
|
|
54 |
), "iters_per_inner_epoch must be greater than 0." |
|
|
55 |
|
|
|
56 |
@property |
|
|
57 |
def max_epoch(self): |
|
|
58 |
return int(self.max_iters / self.iters_per_inner_epoch) |
|
|
59 |
|
|
|
60 |
@property |
|
|
61 |
def cur_epoch(self): |
|
|
62 |
try: |
|
|
63 |
return self.train_loader.epoch |
|
|
64 |
except AttributeError: |
|
|
65 |
# pipeline data (e.g. LAION) is streaming, have no concept of epoch |
|
|
66 |
return 0 |
|
|
67 |
|
|
|
68 |
def _progress(self, cur_iters): |
|
|
69 |
return "{}_iters={}".format(self.cur_epoch, cur_iters) |
|
|
70 |
|
|
|
71 |
def train(self): |
|
|
72 |
start_time = time.time() |
|
|
73 |
best_agg_metric = 0 |
|
|
74 |
best_iters = 0 |
|
|
75 |
|
|
|
76 |
self.log_config() |
|
|
77 |
|
|
|
78 |
# resume from checkpoint if specified |
|
|
79 |
if not self.evaluate_only and self.resume_ckpt_path is not None: |
|
|
80 |
self._load_checkpoint(self.resume_ckpt_path) |
|
|
81 |
|
|
|
82 |
for start_iters in range( |
|
|
83 |
self.start_iters, self.max_iters, self.iters_per_inner_epoch |
|
|
84 |
): |
|
|
85 |
end_iters = start_iters + self.iters_per_inner_epoch |
|
|
86 |
|
|
|
87 |
# training phase |
|
|
88 |
if not self.evaluate_only: |
|
|
89 |
logging.info( |
|
|
90 |
"Start training, max_iters={}, in total {} inner epochs.".format( |
|
|
91 |
self.max_iters, int(self.max_iters / self.iters_per_inner_epoch) |
|
|
92 |
) |
|
|
93 |
) |
|
|
94 |
if start_iters == self.start_iters: |
|
|
95 |
self.task.before_training( |
|
|
96 |
model=self.unwrap_dist_model(self.model), |
|
|
97 |
dataset=self.datasets, |
|
|
98 |
) |
|
|
99 |
train_stats = self.train_iters(self.cur_epoch, start_iters) |
|
|
100 |
self.log_stats(split_name="train", stats=train_stats) |
|
|
101 |
|
|
|
102 |
# evaluation phase |
|
|
103 |
if len(self.valid_splits) > 0: |
|
|
104 |
for split_name in self.valid_splits: |
|
|
105 |
logging.info("Evaluating on {}.".format(split_name)) |
|
|
106 |
|
|
|
107 |
val_log = self.eval_epoch( |
|
|
108 |
split_name=split_name, cur_epoch=self._progress(end_iters) |
|
|
109 |
) |
|
|
110 |
if val_log is not None: |
|
|
111 |
if is_main_process(): |
|
|
112 |
assert ( |
|
|
113 |
"agg_metrics" in val_log |
|
|
114 |
), "No agg_metrics found in validation log." |
|
|
115 |
|
|
|
116 |
agg_metrics = val_log["agg_metrics"] |
|
|
117 |
if agg_metrics > best_agg_metric and split_name == "val": |
|
|
118 |
best_iters, best_agg_metric = end_iters, agg_metrics |
|
|
119 |
|
|
|
120 |
self._save_checkpoint(end_iters, is_best=True) |
|
|
121 |
|
|
|
122 |
val_log.update({"best_iters": best_iters}) |
|
|
123 |
self.log_stats(val_log, split_name) |
|
|
124 |
|
|
|
125 |
else: |
|
|
126 |
# if no validation split is provided, we just save the checkpoint at the end of each inner epoch. |
|
|
127 |
if not self.evaluate_only: |
|
|
128 |
self._save_checkpoint(end_iters, is_best=False) |
|
|
129 |
|
|
|
130 |
if self.evaluate_only: |
|
|
131 |
break |
|
|
132 |
dist.barrier() |
|
|
133 |
|
|
|
134 |
# testing phase |
|
|
135 |
self.evaluate(cur_epoch=self.cur_epoch) |
|
|
136 |
|
|
|
137 |
total_time = time.time() - start_time |
|
|
138 |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) |
|
|
139 |
logging.info("Training time {}".format(total_time_str)) |
|
|
140 |
|
|
|
141 |
def train_iters(self, epoch, start_iters): |
|
|
142 |
# train by iterations |
|
|
143 |
self.model.train() |
|
|
144 |
|
|
|
145 |
return self.task.train_iters( |
|
|
146 |
epoch=epoch, |
|
|
147 |
start_iters=start_iters, |
|
|
148 |
iters_per_inner_epoch=self.iters_per_inner_epoch, |
|
|
149 |
model=self.model, |
|
|
150 |
data_loader=self.train_loader, |
|
|
151 |
optimizer=self.optimizer, |
|
|
152 |
scaler=self.scaler, |
|
|
153 |
lr_scheduler=self.lr_scheduler, |
|
|
154 |
cuda_enabled=self.cuda_enabled, |
|
|
155 |
log_freq=self.log_freq, |
|
|
156 |
accum_grad_iters=self.accum_grad_iters, |
|
|
157 |
) |
|
|
158 |
|
|
|
159 |
@main_process |
|
|
160 |
def _save_checkpoint(self, cur_iters, is_best=False): |
|
|
161 |
model_no_ddp = self.unwrap_dist_model(self.model) |
|
|
162 |
param_grad_dic = { |
|
|
163 |
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters() |
|
|
164 |
} |
|
|
165 |
|
|
|
166 |
state_dict = model_no_ddp.state_dict() |
|
|
167 |
for k in list(state_dict.keys()): |
|
|
168 |
if k in param_grad_dic.keys() and not param_grad_dic[k]: |
|
|
169 |
# delete parameters that do not require gradient |
|
|
170 |
del state_dict[k] |
|
|
171 |
|
|
|
172 |
save_obj = { |
|
|
173 |
"model": state_dict, |
|
|
174 |
"optimizer": self.optimizer.state_dict(), |
|
|
175 |
"config": self.config.to_dict(), |
|
|
176 |
"scaler": self.scaler.state_dict() if self.scaler else None, |
|
|
177 |
"iters": cur_iters, |
|
|
178 |
} |
|
|
179 |
save_to = os.path.join( |
|
|
180 |
self.output_dir, |
|
|
181 |
"checkpoint_{}.pth".format("best" if is_best else cur_iters), |
|
|
182 |
) |
|
|
183 |
logging.info("Saving checkpoint at iters {} to {}.".format(cur_iters, save_to)) |
|
|
184 |
torch.save(save_obj, save_to) |
|
|
185 |
|
|
|
186 |
def _load_checkpoint(self, url_or_filename): |
|
|
187 |
""" |
|
|
188 |
Resume from a checkpoint. |
|
|
189 |
""" |
|
|
190 |
if is_url(url_or_filename): |
|
|
191 |
cached_file = download_cached_file( |
|
|
192 |
url_or_filename, check_hash=False, progress=True |
|
|
193 |
) |
|
|
194 |
checkpoint = torch.load(cached_file, map_location=self.device) |
|
|
195 |
elif os.path.isfile(url_or_filename): |
|
|
196 |
checkpoint = torch.load(url_or_filename, map_location=self.device) |
|
|
197 |
else: |
|
|
198 |
raise RuntimeError("checkpoint url or path is invalid") |
|
|
199 |
|
|
|
200 |
state_dict = checkpoint["model"] |
|
|
201 |
self.unwrap_dist_model(self.model).load_state_dict(state_dict) |
|
|
202 |
|
|
|
203 |
self.optimizer.load_state_dict(checkpoint["optimizer"]) |
|
|
204 |
if self.scaler and "scaler" in checkpoint: |
|
|
205 |
self.scaler.load_state_dict(checkpoint["scaler"]) |
|
|
206 |
|
|
|
207 |
self.start_iters = checkpoint["iters"] + 1 |
|
|
208 |
logging.info("Resume checkpoint from {}".format(url_or_filename)) |
|
|
209 |
|
|
|
210 |
@property |
|
|
211 |
def dataloaders(self) -> dict: |
|
|
212 |
""" |
|
|
213 |
A property to get and create dataloaders by split just in need. |
|
|
214 |
|
|
|
215 |
If no train_dataset_ratio is provided, concatenate map-style datasets and |
|
|
216 |
chain wds.DataPipe datasets separately. Training set becomes a tuple |
|
|
217 |
(ConcatDataset, ChainDataset), both are optional but at least one of them is |
|
|
218 |
required. The resultant ConcatDataset and ChainDataset will be sampled evenly. |
|
|
219 |
|
|
|
220 |
If train_dataset_ratio is provided, create a MultiIterLoader to sample |
|
|
221 |
each dataset by ratios during training. |
|
|
222 |
|
|
|
223 |
Currently do not support multiple datasets for validation and test. |
|
|
224 |
|
|
|
225 |
Returns: |
|
|
226 |
dict: {split_name: (tuples of) dataloader} |
|
|
227 |
""" |
|
|
228 |
if self._dataloaders is None: |
|
|
229 |
# reoganize datasets by split and concatenate/chain if necessary |
|
|
230 |
dataset_ratios = self.config.run_cfg.get("train_dataset_ratios", None) |
|
|
231 |
|
|
|
232 |
if dataset_ratios is None: |
|
|
233 |
# concatenate map-style datasets and chain wds.DataPipe datasets separately |
|
|
234 |
# training set becomes a tuple (ConcatDataset, ChainDataset), both are |
|
|
235 |
# optional but at least one of them is required. The resultant ConcatDataset |
|
|
236 |
# and ChainDataset will be sampled evenly. |
|
|
237 |
logging.info( |
|
|
238 |
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)." |
|
|
239 |
) |
|
|
240 |
|
|
|
241 |
datasets = reorg_datasets_by_split(self.datasets) |
|
|
242 |
self.datasets = concat_datasets(datasets) |
|
|
243 |
else: |
|
|
244 |
# create multi-loader with the provided ratios, without concatenating or chaining |
|
|
245 |
missing_keys = [k for k in dataset_ratios if k not in self.datasets] |
|
|
246 |
if len(missing_keys) > 0: |
|
|
247 |
raise ValueError( |
|
|
248 |
"Datasets with the following split names are not found: {}".format( |
|
|
249 |
missing_keys |
|
|
250 |
) |
|
|
251 |
) |
|
|
252 |
|
|
|
253 |
unexpected_keys = [k for k in self.datasets if k not in dataset_ratios] |
|
|
254 |
if len(unexpected_keys) > 0: |
|
|
255 |
raise ValueError( |
|
|
256 |
"Datasets with the following split names are not expected: {}".format( |
|
|
257 |
unexpected_keys |
|
|
258 |
) |
|
|
259 |
) |
|
|
260 |
|
|
|
261 |
dataset_ratios = [float(dataset_ratios[k]) for k in self.datasets] |
|
|
262 |
self.datasets = reorg_datasets_by_split(self.datasets) |
|
|
263 |
# to keep the same structure as return value of concat_datasets |
|
|
264 |
self.datasets = { |
|
|
265 |
k: v[0] if len(v) == 1 else v for k, v in datasets.items() |
|
|
266 |
} |
|
|
267 |
|
|
|
268 |
# print dataset statistics after concatenation/chaining |
|
|
269 |
for split_name in self.datasets: |
|
|
270 |
if isinstance(self.datasets[split_name], tuple) or isinstance( |
|
|
271 |
self.datasets[split_name], list |
|
|
272 |
): |
|
|
273 |
# mixed wds.DataPipeline and torch.utils.data.Dataset |
|
|
274 |
num_records = sum( |
|
|
275 |
[ |
|
|
276 |
len(d) |
|
|
277 |
if not type(d) in [wds.DataPipeline, ChainDataset] |
|
|
278 |
else 0 |
|
|
279 |
for d in self.datasets[split_name] |
|
|
280 |
] |
|
|
281 |
) |
|
|
282 |
|
|
|
283 |
else: |
|
|
284 |
try: |
|
|
285 |
# a single map-style dataset |
|
|
286 |
num_records = len(self.datasets[split_name]) |
|
|
287 |
except TypeError: |
|
|
288 |
# a single wds.DataPipeline or ChainDataset |
|
|
289 |
num_records = -1 |
|
|
290 |
logging.info( |
|
|
291 |
"Only a single wds.DataPipeline dataset, no __len__ attribute." |
|
|
292 |
) |
|
|
293 |
|
|
|
294 |
if num_records >= 0: |
|
|
295 |
logging.info( |
|
|
296 |
"Loaded {} records for {} split from the dataset.".format( |
|
|
297 |
num_records, split_name |
|
|
298 |
) |
|
|
299 |
) |
|
|
300 |
|
|
|
301 |
# create dataloaders |
|
|
302 |
split_names = sorted(self.datasets.keys()) |
|
|
303 |
|
|
|
304 |
datasets = [self.datasets[split] for split in split_names] |
|
|
305 |
is_trains = [split in self.train_splits for split in split_names] |
|
|
306 |
|
|
|
307 |
batch_sizes = [ |
|
|
308 |
self.config.run_cfg.batch_size_train |
|
|
309 |
if split == "train" |
|
|
310 |
else self.config.run_cfg.batch_size_eval |
|
|
311 |
for split in split_names |
|
|
312 |
] |
|
|
313 |
|
|
|
314 |
collate_fns = [] |
|
|
315 |
for dataset in datasets: |
|
|
316 |
if isinstance(dataset, tuple) or isinstance(dataset, list): |
|
|
317 |
collate_fns.append([getattr(d, "collater", None) for d in dataset]) |
|
|
318 |
else: |
|
|
319 |
collate_fns.append(getattr(dataset, "collater", None)) |
|
|
320 |
|
|
|
321 |
dataloaders = self.create_loaders( |
|
|
322 |
datasets=datasets, |
|
|
323 |
num_workers=self.config.run_cfg.num_workers, |
|
|
324 |
batch_sizes=batch_sizes, |
|
|
325 |
is_trains=is_trains, |
|
|
326 |
collate_fns=collate_fns, |
|
|
327 |
dataset_ratios=dataset_ratios, |
|
|
328 |
) |
|
|
329 |
|
|
|
330 |
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)} |
|
|
331 |
|
|
|
332 |
return self._dataloaders |