[dc40d0]: / lavis / processors / blip_diffusion_processors.py

Download this file

81 lines (63 with data), 2.3 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
from omegaconf import OmegaConf
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from lavis.common.registry import registry
from lavis.processors.base_processor import BaseProcessor
from lavis.processors.blip_processors import BlipImageBaseProcessor
@registry.register_processor("blip_diffusion_inp_image_train")
@registry.register_processor("blip_diffusion_inp_image_eval")
class BlipDiffusionInputImageProcessor(BlipImageBaseProcessor):
def __init__(
self,
image_size=224,
mean=None,
std=None,
):
super().__init__(mean=mean, std=std)
self.transform = transforms.Compose(
[
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
self.normalize,
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 224)
mean = cfg.get("mean", None)
std = cfg.get("std", None)
return cls(image_size=image_size, mean=mean, std=std)
@registry.register_processor("blip_diffusion_tgt_image_train")
class BlipDiffusionTargetImageProcessor(BaseProcessor):
def __init__(
self,
image_size=512,
):
super().__init__()
self.transform = transforms.Compose(
[
transforms.Resize(image_size, interpolation=InterpolationMode.BICUBIC),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
def __call__(self, item):
return self.transform(item)
@classmethod
def from_config(cls, cfg=None):
if cfg is None:
cfg = OmegaConf.create()
image_size = cfg.get("image_size", 512)
return cls(image_size=image_size)