--- a +++ b/docs/tutorial.models.rst @@ -0,0 +1,245 @@ +Adding Models +#################################### + +This is a tutorial on adding new models using ``lavis.models`` module. + +The LAVIS library includes a standard model module that builds the foundation for many major language-vision models such as `ALBEF <https://arxiv.org/pdf/2107.07651.pdf>`_, +`BLIP <https://arxiv.org/pdf/2201.12086.pdf>`_, `ALPRO <https://arxiv.org/pdf/2112.09583.pdf>`_, and `CLIP <https://arxiv.org/pdf/2103.00020.pdf>`_. +The ``lavis.models`` module is designed such that any new models can be added and integrated into the LAVIS library, with minimal steps to develop training and testing procedures. +In this tutorial, we will replicate the steps to add a GPT-style model specifically for `video-grounded dialogue tasks <https://arxiv.org/pdf/1901.09107.pdf>`_. + +Base Model ``lavis.models.base_model`` +************************************************************** + +Note that any new model definition should inherit the base model class ``BaseModel``: + +.. code-block:: python + + from omegaconf import OmegaConf + + import numpy as np + + import torch + import torch.nn as nn + + from lavis.common.utils import get_abs_path + + class BaseModel(nn.Module): + """Base class for models.""" + + def __init__(self): + super().__init__() + + def forward_features(self, *args, **kwargs): + """Similar to *forward* but only return features.""" + raise NotImplementedError + + def load_from_pretrained(self, url_or_filename): + raise NotImplementedError + + @classmethod + def _from_config(cls, cfg=None, model_type="base"): + if not cfg: + # useful when building model without a provided configuration file + cfg = OmegaConf.load(cls.default_config_path(model_type)).model + + return cls.from_config(cfg) + + @classmethod + def from_pretrained(cls, model_type="base"): + """ + Build a pretrained model from the default configuration file, specified by model_type. + """ + return cls._from_config(cfg=None, model_type=model_type) + + @property + def device(self): + return list(self.parameters())[0].device + + @classmethod + def default_config_path(cls, model_type="base"): + assert ( + model_type in cls.PRETRAINED_MODEL_CONFIG_DICT + ), "Unknown model type {}".format(model_type) + return get_abs_path(cls.PRETRAINED_MODEL_CONFIG_DICT[model_type]) + + def before_evaluation(self, **kwargs): + pass + + def show_n_params(self, return_str=True): + tot = 0 + for p in self.parameters(): + w = 1 + for x in p.shape: + w *= x + tot += w + if return_str: + if tot >= 1e6: + return "{:.1f}M".format(tot / 1e6) + else: + return "{:.1f}K".format(tot / 1e3) + else: + return tot + + +In this base model, we already declare and standardize many common methods such as ``_from_config`` and ``_from_pretrained``. +Inheriting this base model class allows us to standardize operations of models across all model classes while still allowing customizations. +We advise users not to change the implementation of the base model class as this will affect all existing model subclasses. + +GPT-style Video-grounded Dialogue Model ``lavis.models.gpt_models.gpt_dialogue`` +******************************************************************************** + +In this step, we can define a new model class, e.g. under ``lavis.models.gpt_models.gpt_dialogue``, for GPT-based dialogue models designed specifically for video-grounded dialogues. +Note that we assume the model class inherits from the standard model super class ``GPT2LMHeadModel`` from the ``transformers`` `library <https://huggingface.co/docs/transformers/index>`_. +We also enforce model integration to the LAVIS framework through the inheritance of the ``BaseModel`` from the LAVIS library, as the secondary super class. + +.. code-block:: python + + import torch + from lavis.common.registry import registry + from lavis.models.base_model import BaseModel + + from transformers import GPT2Model, GPT2LMHeadModel + from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions + import math + import torch + import torch.nn as nn + from torch.nn import CrossEntropyLoss, MSELoss + + @registry.register_model("gpt_dialogue") + class GPTDialogue(GPT2LMHeadModel, BaseModel): + ... + +Next, we can modify the architecture of the model during model initialization to fit the tasks of interest, i.e. video-grounded dialogues. +In this case, we want to add additional model parameters for a linear network to transform the video feature representations to the model dimension. + +.. code-block:: python + + class GPTDialogue(GPT2LMHeadModel, BaseModel): + + def __init__(self, config, len_video_ft=4224): + + super().__init__(config) + + self.video_ff = nn.Linear(len_video_ft, config.n_embd) + + # Model parallel + self.model_parallel = False + self.device_map = None + + # Initialize weights and apply final processing + self.post_init() + +Note that for each new model class, we advise redefining the ``from_config`` method which is inherited from the ``BaseModel`` class. +As each model usually has its own unique configurations, redefining the method will ensure the model instances are created properly. +For instance, ``GPTDialogue`` requires an additional parameter of video feature length (``len_video_ft``) which should be part of the model initialization procedure. +Another additional parameter is the number of tokens/words (as we include additional special tokens in the vocabulary for dialogue tasks). + +.. code-block:: python + + class GPTDialogue(GPT2LMHeadModel, BaseModel): + ... + @classmethod + def from_config(cls, cfg): + model = cls.from_pretrained('gpt2', len_video_ft=cfg['len_video_ft']) + model.resize_token_embeddings(cfg['len_tokenizer']) + return model + +Other basic methods should also be defined explicitly in the new model class, including the ``forward`` function. +For instance, in GPT models for video-grounded dialogue tasks, we want the forward operation also includes the transformation and integration of video features before passing the representations to the Transformer layers. + +.. code-block:: python + + class GPTDialogue(GPT2LMHeadModel, BaseModel): + ... + + def forward(self, samples, + past_key_values=None, + position_ids=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None): + + input_embs = self.transformer.wte(samples['input_ids']) + video_embs = self.video_ff(samples['video_fts']) + input_embs = torch.cat([video_embs, input_embs], dim=1) + + transformer_outputs = self.transformer( + attention_mask=samples['attn_mask'], + token_type_ids=samples['token_type_ids'], + inputs_embeds=input_embs, + position_ids=position_ids, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = transformer_outputs[0] + + lm_logits = self.lm_head(hidden_states) + ... + +Registering New Model ``lavis.models.__init__`` +******************************************************************************** + +Any new model must be officially registered as part of the ``lavis.models`` module. +For instance, to add a model class for GPT-based dialogue models, we can modify the ``__init__.py`` as follows: + +.. code-block:: python + + from lavis.models.gpt_models.gpt_dialogue import GPTDialogue + + __all__ = [ + ... + "GPTDialogue" + ] + +Assigning Model +******************************************************************************** + +From the above example of a model class, note that we define a ``from_config method`` for the new model class. +This method will process a configuration file and pass specific parameters to initialize the model classes properly. +To do this, we can assign/ associate the correct registry of model classes in a configuration file. +For instance, the following should be specified in a configuration file e.g. ``dialogue_avsd_ft.yaml``: + +.. code-block:: yaml + + model: + arch: gpt_dialogue # name of the model + model_type: base + + +Subsequently, any processes (e.g. training) should load this configuration file to assign the correct model. + +.. code-block:: sh + + python train.py --cfg-path dialogue_avsd_ft.yaml + +Note that to simplify the model configuration, we only enable two main parameters here: ``arch`` and ``model_type``. ``arch`` refers to the model class registry, and ``model_type`` is the corresponding model type under this model family. +For instance, with ``gpt_dialogue``, we have a model ``base`` which has its own configuration in a separate configuration file e.g. ``gpt_dialogue_base.yaml``: + +.. code-block:: yaml + + model: + arch: gpt_dialogue + len_tokenizer: 50264 # 50257 tokens from gpt2 default tokenizer + additional special tokens + len_video_ft: 4224 # i3d_rgb: 2048 i3d_flow: 2048 vggish: 128 + +We can pass load this configuration and pass the parameters to the above ``from_config`` method to initialize the model accordingly. +We advise the users to maintain a dictionary that contains default paths to model configurations, in the model class definition. +By default, the LAVIS framework will search for configurations from each model class defined as ``model.PRETRAINED_MODEL_CONFIG_DICT``. + +.. code-block:: python + + class GPTDialogue(GPT2LMHeadModel, BaseModel): + PRETRAINED_MODEL_CONFIG_DICT = { + "base": "configs/models/gpt_dialogue_base.yaml" + } + ...