--- a +++ b/docs/getting_started.rst @@ -0,0 +1,233 @@ +Dataset Zoo +################## +LAVIS inherently supports a wide variety of common language-vision datasets by providing automatic download scripts to help download and organize these datasets; +and implements PyTorch datasets for these datasets. To view supported datasets, use the following code: + +.. code-block:: python + + from lavis.datasets.builders import dataset_zoo + dataset_names = dataset_zoo.get_names() + print(dataset_names) + # ['aok_vqa', 'coco_caption', 'coco_retrieval', 'coco_vqa', 'conceptual_caption_12m', + # 'conceptual_caption_3m', 'didemo_retrieval', 'flickr30k', 'imagenet', 'laion2B_multi', + # 'msrvtt_caption', 'msrvtt_qa', 'msrvtt_retrieval', 'msvd_caption', 'msvd_qa', 'nlvr', + # 'nocaps', 'ok_vqa', 'sbu_caption', 'snli_ve', 'vatex_caption', 'vg_caption', 'vg_vqa'] + print(len(dataset_names)) + # 23 + + +Auto-Downloading and Loading Datasets +###################################### +We now take COCO caption dataset as an example to demonstrate how to download and prepare the dataset. + +In ``lavis/datasets/download_scripts/``, we provide tools to download most common public language-vision datasets supported by LAVIS. +The COCO caption dataset uses images from COCO dataset. Therefore, we first download COCO images via: + +.. code-block:: bash + + cd lavis/datasets/download_scripts/ && python download_coco.py + +This will automatically download and extract COCO images to the default LAVIS cache location. +The default cache location is ``~/.cache/lavis``, defined in ``lavis/configs/default.yaml``. + +After downloading the images, we can use ``load_dataset()`` to obtain the dataset. On the first run, this will automatically download and cache annotation files. + +.. code-block:: python + + from lavis.datasets.builders import load_dataset + coco_dataset = load_dataset("coco_caption") + + print(coco_dataset.keys()) + # dict_keys(['train', 'val', 'test']) + + print(len(coco_dataset["train"])) + # 566747 + + print(coco_dataset["train"][0]) + # {'image': <PIL.Image.Image image mode=RGB size=640x480>, + # 'text_input': 'A woman wearing a net on her head cutting a cake. ', + # 'image_id': 0} + +If you already host a local copy of the dataset, you can pass in the ``vis_path`` argument to change the default location to load images. + +.. code-block:: python + + coco_dataset = load_dataset("coco_caption", vis_path=YOUR_LOCAL_PATH) + + +Model Zoo +#################################### +LAVIS supports a growing list of pre-trained models for different tasks, +datatsets and of varying sizes. Let's get started by viewing the supported models. + +.. code-block:: python + + from lavis.models import model_zoo + print(model_zoo) + # ================================================== + # Architectures Types + # ================================================== + # albef_classification base, ve + # albef_nlvr base + # albef_pretrain base + # albef_retrieval base, coco, flickr + # albef_vqa base, vqav2 + # alpro_qa base, msrvtt, msvd + # alpro_retrieval base, msrvtt, didemo + # blip_caption base, base_coco, large, large_coco + # blip_classification base + # blip_feature_extractor base + # blip_nlvr base + # blip_pretrain base + # blip_retrieval base, coco, flickr + # blip_vqa base, vqav2 + # clip ViT-B-32, ViT-B-16, ViT-L-14, ViT-L-14-336, RN50 + + # show total number of support model variants + len(model_zoo) + # 33 + + +Inference with Pre-trained Models +#################################### + +Now let's see how to use models in LAVIS to perform inference on example data. We first +load a sample image from local. + +.. code-block:: python + + from PIL import Image + + # setup device to use + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + + # load sample image + raw_image = Image.open("docs/_static/merlion.png").convert("RGB") + +This example image shows `Merlion park <https://en.wikipedia.org/wiki/Merlion>`_ (`image credit <https://theculturetrip.com/asia/singapore/articles/what-exactly-is-singapores-merlion-anyway/>`_), a landmark in Singapore. + +.. image:: _static/merlion.png + +Image Captioning +******************************* +We now use the BLIP model to generate a caption for the image. To make inference even easier, we also associate each +pre-trained model with its preprocessors (transforms), we use ``load_model_and_preprocess()`` with the following arguments: + +- ``name``: The name of the model to load. This could be a pre-trained model, task model, or feature extractor. See ``model_zoo`` for a full list of model names. +- ``model_type``: Each architecture has variants trained on different datasets and at different scale. See Types column in ``model_zoo`` for a full list of model types. +- ``is_eval``: if `True`, set the model to evaluation mode. This is desired for inference or feature extraction. +- ``device``: device to load the model to. + +.. code-block:: python + + from lavis.models import load_model_and_preprocess + # loads BLIP caption base model, with finetuned checkpoints on MSCOCO captioning dataset. + # this also loads the associated image processors + model, vis_processors, _ = load_model_and_preprocess(name="blip_caption", model_type="base_coco", is_eval=True, device=device) + + # preprocess the image + # vis_processors stores image transforms for "train" and "eval" (validation / testing / inference) + image = vis_processors["eval"](raw_image).unsqueeze(0).to(device) + + # generate caption + model.generate({"image": image}) + # ['a large fountain spewing water into the air'] + + +You may also load models and their preprocessors separately via ``load_model()`` and ``load_processor()``. +In BLIP, you can also generate diverse captions by turning nucleus sampling on. + +.. code-block:: python + + from lavis.processors import load_processor + from lavis.models import load_model + + # load image preprocesser used for BLIP + vis_processor = load_processor("blip_image_eval").build(image_size=384) + model = load_model(name="blip_caption", model_type="base_coco", is_eval=True, device=device) + + image = vis_processor(image).unsqueeze(0).to(device) + model.generate({"image": raw_image}, use_nucleus_sampling=True) + # one generated random sample: ['some very pretty buildings and some water jets'] + + +Visual question answering (VQA) +******************************* +BLIP model is able to answer free-form questions about images in natural language. +To access the VQA model, simply replace the ``name`` and ``model_type`` arguments +passed to ``load_model_and_preprocess()``. + +.. code-block:: python + + from lavis.models import load_model_and_preprocess + model, vis_processors, txt_processors = load_model_and_preprocess(name="blip_vqa", model_type="vqav2", is_eval=True, device=device) + + # ask a random question. + question = "Which city is this photo taken?" + + image = vis_processors["eval"](raw_image).unsqueeze(0).to(device) + question = txt_processors["eval"](question) + + model.predict_answers(samples={"image": image, "text_input": question}, inference_method="generate") + # ['singapore'] + + +Unified Feature Extraction Interface +#################################### + +LAVIS provides a unified interface to extract multimodal features from each architecture. +To extract features, we load the feature extractor variants of each model. +The multimodal feature can be used for multimodal classification. The low-dimensional unimodal features can be used to compute cross-modal similarity. + +.. code-block:: python + + from lavis.models import load_model_and_preprocess + + model, vis_processors, txt_processors = load_model_and_preprocess(name="blip_feature_extractor", model_type="base", is_eval=True, device=device) + caption = "a large fountain spewing water into the air" + + image = vis_processors["eval"](raw_image).unsqueeze(0).to(device) + text_input = txt_processors["eval"](caption) + + sample = {"image": image, "text_input": [text_input]} + + features_multimodal = model.extract_features(sample) + print(features_multimodal.keys()) + # odict_keys(['image_embeds', 'multimodal_embeds']) + print(features_multimodal.multimodal_embeds.shape) + # torch.Size([1, 12, 768]), use features_multimodal[:, 0, :] for multimodal classification tasks + + features_image = model.extract_features(sample, mode="image") + print(features_image.keys()) + # odict_keys(['image_embeds', 'image_embeds_proj']) + print(features_image.image_embeds.shape) + # torch.Size([1, 197, 768]) + print(features_image.image_embeds_proj.shape) + # torch.Size([1, 197, 256]) + + features_text = model.extract_features(sample, mode="text") + print(features_text.keys()) + # odict_keys(['text_embeds', 'text_embeds_proj']) + print(features_text.text_embeds.shape) + # torch.Size([1, 12, 768]) + print(features_text.text_embeds_proj.shape) + # torch.Size([1, 12, 256]) + + similarity = features_image.image_embeds_proj[:, 0, :] @ features_text.text_embeds_proj[:, 0, :].t() + print(similarity) + # tensor([[0.2622]]) + +Since LAVIS supports a unified feature extraction interface, minimal changes are necessary to use a different model as feature extractor. For example, +to use ALBEF as the feature extractor, one only needs to change the following line: + +.. code-block:: python + + model, vis_processors, txt_processors = load_model_and_preprocess(name="albef_feature_extractor", model_type="base", is_eval=True, device=device) + +Similarly, to use CLIP as feature extractor: + +.. code-block:: python + + model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="base", is_eval=True, device=device) + # model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="RN50", is_eval=True, device=device) + # model, vis_processors, txt_processors = load_model_and_preprocess(name="clip_feature_extractor", model_type="ViT-L-14", is_eval=True, device=device)