Switch to side-by-side view

--- a
+++ b/PathBLIP/modeling_pathblip_t5.py
@@ -0,0 +1,383 @@
+"""
+ Copyright (c) 2023, salesforce.com, inc.
+ All rights reserved.
+ SPDX-License-Identifier: BSD-3-Clause
+ For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
+"""
+import logging
+
+import torch
+import torch.nn as nn
+from torch.cuda.amp import autocast as autocast
+from transformers import T5TokenizerFast
+
+from lavis.common.registry import registry
+from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train
+from lavis.models.blip2_models.modeling_t5 import T5Config, T5ForConditionalGeneration
+
+
+# @registry.register_model("blip2_t5")
+class PathBlip2T5(Blip2Base):
+    """
+    BLIP2 T5 model.
+    Supported model types:
+        - pretrain_flant5xl: pretrained model with FlanT5-XL
+        - pretrain_flant5xl_vitL: pretrained model with FlanT5-XL
+        - pretrain_flant5xxl: pretrained model with FlanT5-XXL
+        - caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL
+    Usage:
+        >>> from lavis.models import load_model
+        >>> model = load_model("blip2_t5", "pretrain_flant5xl")
+    """
+
+    PRETRAINED_MODEL_CONFIG_DICT = {
+        "pretrain_flant5xl": "configs/models/blip2/blip2_pretrain_flant5xl.yaml",
+        "pretrain_flant5xl_vitL": "configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml",
+        "pretrain_flant5xxl": "configs/models/blip2/blip2_pretrain_flant5xxl.yaml",
+        "caption_coco_flant5xl": "configs/models/blip2/blip2_caption_flant5xl.yaml",
+    }
+
+    def __init__(
+        self,
+        vit_model="eva_clip_g",
+        img_size=224,
+        drop_path_rate=0,
+        use_grad_checkpoint=False,
+        vit_precision="fp16",
+        freeze_vit=True,
+        num_query_token=32,
+        t5_model="../BLIP/FLAN",
+        prompt="",
+        max_txt_len=32,
+        apply_lemmatizer=False,
+    ):
+        """
+        apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas.
+        """
+        super().__init__()
+
+        self.tokenizer = self.init_tokenizer()
+
+        self.visual_encoder, self.ln_vision = self.init_vision_encoder(
+            vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision
+        )
+        if freeze_vit:
+            for name, param in self.visual_encoder.named_parameters():
+                param.requires_grad = False
+            self.visual_encoder = self.visual_encoder.eval()
+            self.visual_encoder.train = disabled_train
+            logging.info("freeze vision encoder")
+
+        self.Qformer, self.query_tokens = self.init_Qformer(
+            num_query_token, self.visual_encoder.num_features
+        )
+        self.Qformer.cls = None
+        self.Qformer.bert.embeddings.word_embeddings = None
+        self.Qformer.bert.embeddings.position_embeddings = None
+        for layer in self.Qformer.bert.encoder.layer:
+            layer.output = None
+            layer.intermediate = None
+
+        self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model)
+        t5_config = T5Config.from_pretrained(t5_model)
+        t5_config.dense_act_fn = "gelu"
+        self.t5_model = T5ForConditionalGeneration.from_pretrained(
+            t5_model, config=t5_config
+        )
+
+        for name, param in self.t5_model.named_parameters():
+            param.requires_grad = False
+            param.data = param.data.bfloat16()
+
+        self.t5_proj = nn.Linear(
+            self.Qformer.config.hidden_size, self.t5_model.config.hidden_size
+        )
+
+        self.max_txt_len = max_txt_len
+        self.prompt = prompt
+
+        self._apply_lemmatizer = apply_lemmatizer
+        self._lemmatizer = None
+
+    def forward(self, samples):
+        image = samples["image"]
+
+        with self.maybe_autocast():
+            image_embeds = self.ln_vision(self.visual_encoder(image))
+        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
+            image.device
+        )
+
+        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+        query_output = self.Qformer.bert(
+            query_embeds=query_tokens,
+            encoder_hidden_states=image_embeds,
+            encoder_attention_mask=image_atts,
+            return_dict=True,
+        )
+
+        inputs_t5 = self.t5_proj(query_output.last_hidden_state)
+        atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
+
+        with self.maybe_autocast(dtype=torch.bfloat16):
+            input_tokens = self.t5_tokenizer(
+                samples["text_input"],
+                padding="longest",
+                truncation=True,
+                max_length=self.max_txt_len,
+                return_tensors="pt",
+            ).to(image.device)
+            output_tokens = self.t5_tokenizer(
+                samples["text_output"],
+                padding="longest",
+                truncation=True,
+                max_length=self.max_txt_len,
+                return_tensors="pt",
+            ).to(image.device)
+
+            encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
+
+            targets = output_tokens.input_ids.masked_fill(
+                output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100
+            )
+
+            inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
+            inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
+
+            outputs = self.t5_model(
+                inputs_embeds=inputs_embeds,
+                attention_mask=encoder_atts,
+                decoder_attention_mask=output_tokens.attention_mask,
+                return_dict=True,
+                labels=targets,
+            )
+            loss = outputs.loss
+
+            return {"loss": loss}
+
+    @torch.no_grad()
+    def generate(
+        self,
+        samples,
+        use_nucleus_sampling=False,
+        num_beams=5,
+        max_length=30,
+        min_length=1,
+        top_p=0.9,
+        repetition_penalty=1.0,
+        length_penalty=1.0,
+        num_captions=1,
+        temperature=1,
+    ):
+        """
+        Args:
+            samples (dict): A dictionary containing the following keys:
+                - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W)
+            use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling.
+            num_beams (int): Number of beams for beam search. 1 means no beam search.
+            max_length (int): The maximum length of the sequence to be generated.
+            min_length (int): The minimum length of the sequence to be generated.
+            top_p (float): The cumulative probability for nucleus sampling.
+            repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty.
+            num_captions (int): Number of captions to be generated for each image.
+        Returns:
+            captions (list): A list of strings of length batch_size * num_captions.
+        """
+        image = samples["image"]
+
+        with self.maybe_autocast():
+            image_embeds = self.ln_vision(self.visual_encoder(image))
+        image_embeds = image_embeds.float() #1 * 257 * 1408
+        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
+            image.device
+        )
+
+        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)  #1 * 32 * 768
+        query_output = self.Qformer.bert(
+            query_embeds=query_tokens,
+            encoder_hidden_states=image_embeds,
+            encoder_attention_mask=image_atts,
+            return_dict=True,
+        )
+
+        inputs_t5 = self.t5_proj(query_output.last_hidden_state) # 1 * 32 * 768 -> 1 * 32 * 2048
+        atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
+
+        if "prompt" in samples.keys():
+            prompt = samples["prompt"]
+        else:
+            prompt = self.prompt
+
+        if isinstance(prompt, str):
+            prompt = [prompt] * image.size(0)
+        else:
+            assert len(prompt) == image.size(
+                0
+            ), "The number of prompts must be equal to the batch size."
+
+        input_tokens = self.t5_tokenizer(
+            prompt, padding="longest", return_tensors="pt"
+        ).to(image.device)
+
+        encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
+
+        with self.maybe_autocast(dtype=torch.bfloat16):
+            inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
+            inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
+
+            outputs = self.t5_model.generate(
+                inputs_embeds=inputs_embeds,
+                attention_mask=encoder_atts,
+                do_sample=use_nucleus_sampling,
+                top_p=top_p,
+                temperature=temperature,
+                num_beams=num_beams,
+                max_new_tokens=max_length,
+                min_length=min_length,
+                repetition_penalty=repetition_penalty,
+                length_penalty=length_penalty,
+                num_return_sequences=num_captions,
+            )
+            output_text = self.t5_tokenizer.batch_decode(
+                outputs, skip_special_tokens=True
+            )
+
+        return output_text
+
+    def predict_answers(
+        self,
+        samples,
+        num_beams=5,
+        inference_method="generate",
+        max_len=10,
+        min_len=1,
+        num_ans_candidates=128,
+        answer_list=None,
+        prompt="",
+        length_penalty=-1,
+        **kwargs
+    ):
+        image = samples["image"]
+        with self.maybe_autocast():
+            image_embeds = self.ln_vision(self.visual_encoder(image))
+        image_embeds = image_embeds.float()
+        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
+            image.device
+        )
+
+        query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
+        query_output = self.Qformer.bert(
+            query_embeds=query_tokens,
+            encoder_hidden_states=image_embeds,
+            encoder_attention_mask=image_atts,
+            return_dict=True,
+        )
+
+        inputs_t5 = self.t5_proj(query_output.last_hidden_state)
+        atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
+
+        if isinstance(samples["text_input"], str):
+            samples["text_input"] = [samples["text_input"]]
+        if prompt:
+            text_input = [prompt.format(question) for question in samples["text_input"]]
+        else:
+            text_input = samples["text_input"]
+
+        input_tokens = self.t5_tokenizer(
+            text_input, padding="longest", return_tensors="pt"
+        ).to(image.device)
+
+        encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
+
+        with self.maybe_autocast(dtype=torch.bfloat16):
+            inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids)
+            inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
+
+            outputs = self.t5_model.generate(
+                inputs_embeds=inputs_embeds,
+                attention_mask=encoder_atts,
+                do_sample=False,
+                num_beams=num_beams,
+                max_new_tokens=max_len,
+                min_length=min_len,
+                length_penalty=length_penalty,
+            )
+            output_text = self.t5_tokenizer.batch_decode(
+                outputs, skip_special_tokens=True
+            )
+
+        if self._apply_lemmatizer:
+            output_text = self._lemmatize(output_text)
+
+        return output_text
+
+    def _lemmatize(self, answers):
+        def apply(answer):
+            doc = self.lemmatizer(answer)
+
+            words = []
+            for token in doc:
+                if token.pos_ in ["NOUN", "VERB"]:
+                    words.append(token.lemma_)
+                else:
+                    words.append(token.text)
+            answer = " ".join(words)
+
+            return answer
+
+        return [apply(answer) for answer in answers]
+
+    @property
+    def lemmatizer(self):
+        if self._lemmatizer is None:
+            try:
+                import spacy
+
+                self._lemmatizer = spacy.load("en_core_web_sm")
+            except ImportError:
+                logging.error(
+                    """
+                    Please install spacy and en_core_web_sm model to apply lemmatization.
+                    python -m spacy download en_core_web_sm
+                    OR
+                    import spacy.cli
+                    spacy.cli.download("en_core_web_sm")
+                    """
+                )
+                exit(1)
+
+        return self._lemmatizer
+
+    @classmethod
+    def from_config(cls, cfg):
+        vit_model = cfg.get("vit_model", "eva_clip_g")
+        img_size = cfg.get("image_size")
+        num_query_token = cfg.get("num_query_token")
+        t5_model = cfg.get("t5_model")
+
+        drop_path_rate = cfg.get("drop_path_rate", 0)
+        use_grad_checkpoint = cfg.get("use_grad_checkpoint", False)
+        vit_precision = cfg.get("vit_precision", "fp16")
+        freeze_vit = cfg.get("freeze_vit", True)
+
+        prompt = cfg.get("prompt", "")
+        max_txt_len = cfg.get("max_txt_len", 32)
+
+        apply_lemmatizer = cfg.get("apply_lemmatizer", False)
+
+        model = cls(
+            vit_model=vit_model,
+            img_size=img_size,
+            drop_path_rate=drop_path_rate,
+            use_grad_checkpoint=use_grad_checkpoint,
+            vit_precision=vit_precision,
+            freeze_vit=freeze_vit,
+            num_query_token=num_query_token,
+            t5_model=t5_model,
+            prompt=prompt,
+            max_txt_len=max_txt_len,
+            apply_lemmatizer=apply_lemmatizer,
+        )
+        model.load_checkpoint_from_config(cfg)
+
+        return model