--- a +++ b/PathBLIP/modeling_pathblip_t5.py @@ -0,0 +1,383 @@ +""" + Copyright (c) 2023, salesforce.com, inc. + All rights reserved. + SPDX-License-Identifier: BSD-3-Clause + For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause +""" +import logging + +import torch +import torch.nn as nn +from torch.cuda.amp import autocast as autocast +from transformers import T5TokenizerFast + +from lavis.common.registry import registry +from lavis.models.blip2_models.blip2 import Blip2Base, disabled_train +from lavis.models.blip2_models.modeling_t5 import T5Config, T5ForConditionalGeneration + + +# @registry.register_model("blip2_t5") +class PathBlip2T5(Blip2Base): + """ + BLIP2 T5 model. + Supported model types: + - pretrain_flant5xl: pretrained model with FlanT5-XL + - pretrain_flant5xl_vitL: pretrained model with FlanT5-XL + - pretrain_flant5xxl: pretrained model with FlanT5-XXL + - caption_coco_flant5xl: fintuned image captioning model with FlanT5-XL + Usage: + >>> from lavis.models import load_model + >>> model = load_model("blip2_t5", "pretrain_flant5xl") + """ + + PRETRAINED_MODEL_CONFIG_DICT = { + "pretrain_flant5xl": "configs/models/blip2/blip2_pretrain_flant5xl.yaml", + "pretrain_flant5xl_vitL": "configs/models/blip2/blip2_pretrain_flant5xl_vitL.yaml", + "pretrain_flant5xxl": "configs/models/blip2/blip2_pretrain_flant5xxl.yaml", + "caption_coco_flant5xl": "configs/models/blip2/blip2_caption_flant5xl.yaml", + } + + def __init__( + self, + vit_model="eva_clip_g", + img_size=224, + drop_path_rate=0, + use_grad_checkpoint=False, + vit_precision="fp16", + freeze_vit=True, + num_query_token=32, + t5_model="../BLIP/FLAN", + prompt="", + max_txt_len=32, + apply_lemmatizer=False, + ): + """ + apply_lemmatizer: when set to True, postprocess predict_answers() result with lemmas. + """ + super().__init__() + + self.tokenizer = self.init_tokenizer() + + self.visual_encoder, self.ln_vision = self.init_vision_encoder( + vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision + ) + if freeze_vit: + for name, param in self.visual_encoder.named_parameters(): + param.requires_grad = False + self.visual_encoder = self.visual_encoder.eval() + self.visual_encoder.train = disabled_train + logging.info("freeze vision encoder") + + self.Qformer, self.query_tokens = self.init_Qformer( + num_query_token, self.visual_encoder.num_features + ) + self.Qformer.cls = None + self.Qformer.bert.embeddings.word_embeddings = None + self.Qformer.bert.embeddings.position_embeddings = None + for layer in self.Qformer.bert.encoder.layer: + layer.output = None + layer.intermediate = None + + self.t5_tokenizer = T5TokenizerFast.from_pretrained(t5_model) + t5_config = T5Config.from_pretrained(t5_model) + t5_config.dense_act_fn = "gelu" + self.t5_model = T5ForConditionalGeneration.from_pretrained( + t5_model, config=t5_config + ) + + for name, param in self.t5_model.named_parameters(): + param.requires_grad = False + param.data = param.data.bfloat16() + + self.t5_proj = nn.Linear( + self.Qformer.config.hidden_size, self.t5_model.config.hidden_size + ) + + self.max_txt_len = max_txt_len + self.prompt = prompt + + self._apply_lemmatizer = apply_lemmatizer + self._lemmatizer = None + + def forward(self, samples): + image = samples["image"] + + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( + image.device + ) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_t5 = self.t5_proj(query_output.last_hidden_state) + atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) + + with self.maybe_autocast(dtype=torch.bfloat16): + input_tokens = self.t5_tokenizer( + samples["text_input"], + padding="longest", + truncation=True, + max_length=self.max_txt_len, + return_tensors="pt", + ).to(image.device) + output_tokens = self.t5_tokenizer( + samples["text_output"], + padding="longest", + truncation=True, + max_length=self.max_txt_len, + return_tensors="pt", + ).to(image.device) + + encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) + + targets = output_tokens.input_ids.masked_fill( + output_tokens.input_ids == self.t5_tokenizer.pad_token_id, -100 + ) + + inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) + inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) + + outputs = self.t5_model( + inputs_embeds=inputs_embeds, + attention_mask=encoder_atts, + decoder_attention_mask=output_tokens.attention_mask, + return_dict=True, + labels=targets, + ) + loss = outputs.loss + + return {"loss": loss} + + @torch.no_grad() + def generate( + self, + samples, + use_nucleus_sampling=False, + num_beams=5, + max_length=30, + min_length=1, + top_p=0.9, + repetition_penalty=1.0, + length_penalty=1.0, + num_captions=1, + temperature=1, + ): + """ + Args: + samples (dict): A dictionary containing the following keys: + - image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) + use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling. + num_beams (int): Number of beams for beam search. 1 means no beam search. + max_length (int): The maximum length of the sequence to be generated. + min_length (int): The minimum length of the sequence to be generated. + top_p (float): The cumulative probability for nucleus sampling. + repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. + num_captions (int): Number of captions to be generated for each image. + Returns: + captions (list): A list of strings of length batch_size * num_captions. + """ + image = samples["image"] + + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_embeds = image_embeds.float() #1 * 257 * 1408 + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( + image.device + ) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) #1 * 32 * 768 + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_t5 = self.t5_proj(query_output.last_hidden_state) # 1 * 32 * 768 -> 1 * 32 * 2048 + atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) + + if "prompt" in samples.keys(): + prompt = samples["prompt"] + else: + prompt = self.prompt + + if isinstance(prompt, str): + prompt = [prompt] * image.size(0) + else: + assert len(prompt) == image.size( + 0 + ), "The number of prompts must be equal to the batch size." + + input_tokens = self.t5_tokenizer( + prompt, padding="longest", return_tensors="pt" + ).to(image.device) + + encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) + + with self.maybe_autocast(dtype=torch.bfloat16): + inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) + inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) + + outputs = self.t5_model.generate( + inputs_embeds=inputs_embeds, + attention_mask=encoder_atts, + do_sample=use_nucleus_sampling, + top_p=top_p, + temperature=temperature, + num_beams=num_beams, + max_new_tokens=max_length, + min_length=min_length, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, + num_return_sequences=num_captions, + ) + output_text = self.t5_tokenizer.batch_decode( + outputs, skip_special_tokens=True + ) + + return output_text + + def predict_answers( + self, + samples, + num_beams=5, + inference_method="generate", + max_len=10, + min_len=1, + num_ans_candidates=128, + answer_list=None, + prompt="", + length_penalty=-1, + **kwargs + ): + image = samples["image"] + with self.maybe_autocast(): + image_embeds = self.ln_vision(self.visual_encoder(image)) + image_embeds = image_embeds.float() + image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( + image.device + ) + + query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) + query_output = self.Qformer.bert( + query_embeds=query_tokens, + encoder_hidden_states=image_embeds, + encoder_attention_mask=image_atts, + return_dict=True, + ) + + inputs_t5 = self.t5_proj(query_output.last_hidden_state) + atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device) + + if isinstance(samples["text_input"], str): + samples["text_input"] = [samples["text_input"]] + if prompt: + text_input = [prompt.format(question) for question in samples["text_input"]] + else: + text_input = samples["text_input"] + + input_tokens = self.t5_tokenizer( + text_input, padding="longest", return_tensors="pt" + ).to(image.device) + + encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1) + + with self.maybe_autocast(dtype=torch.bfloat16): + inputs_embeds = self.t5_model.encoder.embed_tokens(input_tokens.input_ids) + inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1) + + outputs = self.t5_model.generate( + inputs_embeds=inputs_embeds, + attention_mask=encoder_atts, + do_sample=False, + num_beams=num_beams, + max_new_tokens=max_len, + min_length=min_len, + length_penalty=length_penalty, + ) + output_text = self.t5_tokenizer.batch_decode( + outputs, skip_special_tokens=True + ) + + if self._apply_lemmatizer: + output_text = self._lemmatize(output_text) + + return output_text + + def _lemmatize(self, answers): + def apply(answer): + doc = self.lemmatizer(answer) + + words = [] + for token in doc: + if token.pos_ in ["NOUN", "VERB"]: + words.append(token.lemma_) + else: + words.append(token.text) + answer = " ".join(words) + + return answer + + return [apply(answer) for answer in answers] + + @property + def lemmatizer(self): + if self._lemmatizer is None: + try: + import spacy + + self._lemmatizer = spacy.load("en_core_web_sm") + except ImportError: + logging.error( + """ + Please install spacy and en_core_web_sm model to apply lemmatization. + python -m spacy download en_core_web_sm + OR + import spacy.cli + spacy.cli.download("en_core_web_sm") + """ + ) + exit(1) + + return self._lemmatizer + + @classmethod + def from_config(cls, cfg): + vit_model = cfg.get("vit_model", "eva_clip_g") + img_size = cfg.get("image_size") + num_query_token = cfg.get("num_query_token") + t5_model = cfg.get("t5_model") + + drop_path_rate = cfg.get("drop_path_rate", 0) + use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) + vit_precision = cfg.get("vit_precision", "fp16") + freeze_vit = cfg.get("freeze_vit", True) + + prompt = cfg.get("prompt", "") + max_txt_len = cfg.get("max_txt_len", 32) + + apply_lemmatizer = cfg.get("apply_lemmatizer", False) + + model = cls( + vit_model=vit_model, + img_size=img_size, + drop_path_rate=drop_path_rate, + use_grad_checkpoint=use_grad_checkpoint, + vit_precision=vit_precision, + freeze_vit=freeze_vit, + num_query_token=num_query_token, + t5_model=t5_model, + prompt=prompt, + max_txt_len=max_txt_len, + apply_lemmatizer=apply_lemmatizer, + ) + model.load_checkpoint_from_config(cfg) + + return model