|
a |
|
b/PathBLIP/dataset.py |
|
|
1 |
from torch.utils.data import Dataset |
|
|
2 |
import pandas as pd |
|
|
3 |
import os |
|
|
4 |
from PIL import Image |
|
|
5 |
from torchvision import transforms |
|
|
6 |
from collections import defaultdict |
|
|
7 |
import torch |
|
|
8 |
|
|
|
9 |
class ImageTextContrastiveCollator: |
|
|
10 |
def __init__(self): |
|
|
11 |
return |
|
|
12 |
def __call__(self, batch): |
|
|
13 |
inputs = defaultdict(list) |
|
|
14 |
for data in batch: |
|
|
15 |
inputs['image'].append(data['image']) |
|
|
16 |
inputs['text_input'].append(data['text_input']) |
|
|
17 |
inputs['text_output'].append(data['text_output']) |
|
|
18 |
|
|
|
19 |
|
|
|
20 |
# inputs['image'] = torch.stack(inputs['image']) |
|
|
21 |
|
|
|
22 |
return inputs |
|
|
23 |
|
|
|
24 |
class Quiltdataset(Dataset): |
|
|
25 |
def __init__(self): |
|
|
26 |
# self.df = pd.read_csv(csv_path) |
|
|
27 |
self.df = pd.read_csv('../BLIP/LAVIS-main/quilt.csv') |
|
|
28 |
self.df = self.df.dropna(axis=0, subset=['pathology'])[400000:] |
|
|
29 |
normalize = transforms.Normalize( |
|
|
30 |
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711) |
|
|
31 |
) |
|
|
32 |
|
|
|
33 |
self.transform = transforms.Compose( |
|
|
34 |
[ |
|
|
35 |
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)), |
|
|
36 |
transforms.RandomHorizontalFlip(), |
|
|
37 |
transforms.ToTensor(), |
|
|
38 |
normalize, |
|
|
39 |
] |
|
|
40 |
) |
|
|
41 |
|
|
|
42 |
def __len__(self): |
|
|
43 |
return len(self.df) |
|
|
44 |
def __getitem__(self, index): |
|
|
45 |
caption = self.df.iloc[index]['caption'] |
|
|
46 |
if type(caption) == float: |
|
|
47 |
caption = "This is a image about the pathology." |
|
|
48 |
img_path = self.df.iloc[index]['image_path'] |
|
|
49 |
# img_path = os.path.join("../", img_path) |
|
|
50 |
# image = Image.open(img_path).convert('RGB') |
|
|
51 |
# image = self.transform(image) |
|
|
52 |
# caption = self.text_processor(caption) |
|
|
53 |
# img = self.transform(img) |
|
|
54 |
|
|
|
55 |
caption = caption.split() |
|
|
56 |
prefix = caption[:int(len(caption) * 0.2)] |
|
|
57 |
subfix = caption[int(len(caption) * 0.2):] |
|
|
58 |
prefix = " ".join(prefix) |
|
|
59 |
subfix = " ".join(subfix) |
|
|
60 |
return { |
|
|
61 |
"image": img_path, |
|
|
62 |
"text_input": prefix, |
|
|
63 |
"text_output": subfix, |
|
|
64 |
} |
|
|
65 |
# return { |
|
|
66 |
# "image": img_path, |
|
|
67 |
# "text_input": caption, |
|
|
68 |
# "text_output": caption, |
|
|
69 |
# } |
|
|
70 |
|
|
|
71 |
|
|
|
72 |
|
|
|
73 |
if __name__ == '__main__': |
|
|
74 |
test = Quiltdataset() |
|
|
75 |
print(test.__len__()) |
|
|
76 |
print(test.__getitem__(0)) |
|
|
77 |
print(test.__getitem__(1)) |
|
|
78 |
|
|
|
79 |
|
|
|
80 |
|