from torch.utils.data import Dataset
import pandas as pd
import os
from PIL import Image
from torchvision import transforms
from collections import defaultdict
import torch
class ImageTextContrastiveCollator:
def __init__(self):
return
def __call__(self, batch):
inputs = defaultdict(list)
for data in batch:
inputs['image'].append(data['image'])
inputs['text_input'].append(data['text_input'])
inputs['text_output'].append(data['text_output'])
# inputs['image'] = torch.stack(inputs['image'])
return inputs
class Quiltdataset(Dataset):
def __init__(self):
# self.df = pd.read_csv(csv_path)
self.df = pd.read_csv('../BLIP/LAVIS-main/quilt.csv')
self.df = self.df.dropna(axis=0, subset=['pathology'])[400000:]
normalize = transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
def __len__(self):
return len(self.df)
def __getitem__(self, index):
caption = self.df.iloc[index]['caption']
if type(caption) == float:
caption = "This is a image about the pathology."
img_path = self.df.iloc[index]['image_path']
# img_path = os.path.join("../", img_path)
# image = Image.open(img_path).convert('RGB')
# image = self.transform(image)
# caption = self.text_processor(caption)
# img = self.transform(img)
caption = caption.split()
prefix = caption[:int(len(caption) * 0.2)]
subfix = caption[int(len(caption) * 0.2):]
prefix = " ".join(prefix)
subfix = " ".join(subfix)
return {
"image": img_path,
"text_input": prefix,
"text_output": subfix,
}
# return {
# "image": img_path,
# "text_input": caption,
# "text_output": caption,
# }
if __name__ == '__main__':
test = Quiltdataset()
print(test.__len__())
print(test.__getitem__(0))
print(test.__getitem__(1))