from torch.utils.data import Dataset
import pandas as pd
import os
from PIL import Image
from torchvision import transforms
from collections import defaultdict
import torch
import pickle
class ImageTextContrastiveCollator:
def __init__(self):
return
def __call__(self, batch):
inputs = defaultdict(list)
for data in batch:
inputs['image'].append(data['image'])
inputs['question'].append(data['question'])
inputs['answer'].append(data['answer'])
# inputs['image'] = torch.stack(inputs['image'])
return inputs
pkl_path = '../PathVQA/pvqa/qas/test_vqa.pkl'
class PVQAdataset(Dataset):
def __init__(self):
# self.df = pd.read_csv(csv_path)
with open(pkl_path, 'rb') as f:
self.data = pickle.load(f)
normalize = transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)
)
self.transform = transforms.Compose(
[
transforms.RandomResizedCrop(224, scale=(0.2, 1.0)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
question = self.data[index]['sent']
answer = list(self.data[index]['label'].keys())[0]
img_path = os.path.join('../PathVQA/pvqa/images', 'test', self.data[index]['img_id'])+".jpg"
return {
"image": img_path,
"question": question,
"answer": answer,
}
# return {
# "image": img_path,
# "text_input": caption,
# "text_output": caption,
# }
if __name__ == '__main__':
test = PVQAdataset()
print(test.__len__())
print(test.__getitem__(0))
print(test.__getitem__(1))