[2979df]: / code / mlc-ae.py

Download this file

230 lines (210 with data), 11.1 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
import tensorflow as tf
from tensorflow.keras.layers import Input, Dense, BatchNormalization, GaussianNoise, GaussianDropout, Conv1D, multiply
from tensorflow.keras.models import Model
import tensorflow.keras.backend as backend
import numpy as np
from sklearn.preprocessing import LabelEncoder, normalize, RobustScaler
import sklearn.metrics as sk
from sklearn.metrics import mean_absolute_error as mae
from sklearn.metrics import mean_squared_error as mse
import tensorflow.keras.utils as np_utils
from tensorflow.keras.callbacks import CSVLogger, History
import data_provider
import os
from options import opt, MODEL_DIR
import time
import shap
import pandas as pd
def mlc_ae(training=False):
load_file = '../data_process/tcga_pfi.h5' if opt.pfi else '../data_process/tcga.h5'
m_rna, label, gene, sample_id = data_provider.load_h5_all(load_file, True)
if not opt.pfi:
m_rna_o, label_o, gene_o, sample_id_o = data_provider.load_h5_all('../data_process/other.h5', True)
m_rna, label, sample_id = np.concatenate((m_rna, m_rna_o)), np.concatenate((label, label_o)), \
np.concatenate((sample_id, sample_id_o))
m_rna = normalize(X=m_rna, axis=0, norm="max")
print('feat and label size', m_rna.shape, label)
"""first random: train and test sets"""
indices = np.arange(m_rna.shape[0])
np.random.seed(1)
np.random.shuffle(indices)
m_rna2 = m_rna[indices]
label2 = label[indices]
sample_id = sample_id[indices]
if opt.use_all:
categorical_label = np_utils.to_categorical(label2, num_classes=6)
else:
categorical_label = np_utils.to_categorical(label2, num_classes=2)
"""to save the data split strategy for other analysis"""
# tofile = np.stack((sample_id.astype(str), label2.astype(str)), axis=1)
# np.savetxt(X=tofile, fname=MODEL_DIR + "/sample_id.txt", delimiter=",", fmt='%s')
m_rna_train = m_rna2[:-opt.test_size, ]
m_rna_test = m_rna2[-opt.test_size:, ]
categorical_label_train = categorical_label[:-opt.test_size, ]
categorical_label_test = categorical_label[-opt.test_size:, ]
label_train = label2[:-opt.test_size, ]
label_test = label2[-opt.test_size:, ]
# pr sample operations
pr_idx_train = np.array([i for i, e in enumerate(label_train) if e == 2 or e == 3])
pr_idx_test = np.array([i for i, e in enumerate(label_test) if e == 2 or e == 3])
print('healthy samples in training set:', sum([1 for x in label_train if x == 3]))
print('healthy samples in testing set:', sum([1 for x in label_test if x == 3]))
pr_m_rna_train = m_rna_train[pr_idx_train]
pr_m_rna_test = m_rna_test[pr_idx_test]
pr_label_train = label_train[pr_idx_train] - 2
pr_label_test = label_test[pr_idx_test] - 2
print('PR train and test size:', pr_label_train.shape, pr_idx_test.shape)
pr_categorical_label_train = np_utils.to_categorical(pr_label_train)
pr_categorical_label_test = np_utils.to_categorical(pr_label_test)
print("data loading has just been finished")
def create_model():
inputs = Input(shape=(m_rna.shape[1],), name="inputs")
inputs_0 = BatchNormalization(name="inputs_0")(inputs)
inputs_1 = Dense(1024, activation="relu", name="inputs_1")(inputs_0)
inputs_2 = BatchNormalization(name="inputs_2")(inputs_1)
inputs_3 = Dense(256, activation="relu", name="inputs_3")(inputs_2)
inputs_4 = BatchNormalization(name="inputs_4")(inputs_3)
encoded = Dense(units=12, activation='relu', name='encoded')(inputs_4)
inputs_5 = Dense(512, activation="relu", name="inputs_5")(encoded)
decoded_tcga = Dense(units=m_rna.shape[1], activation='linear', name="m_rna")(inputs_5)
if opt.use_all:
cl_0 = Dense(units=categorical_label_train.shape[1], activation="softmax", name="category")(encoded)
else:
cl_0 = Dense(units=pr_categorical_label_train.shape[1], activation="softmax", name="category")(encoded)
m = Model(inputs=inputs, outputs=[decoded_tcga, cl_0])
m.compile(optimizer='adam',
loss=["mse", "cosine_similarity"], # "cosine_similarity"],
loss_weights=[0.001, 0.5], # , 0.5
metrics={"m_rna": ["mae", "mse"], "category": "acc"}) # , "cl_disease": "acc"
return m
model = create_model()
checkpoint_path = os.path.join(MODEL_DIR, 'my_model.h5')
# model.summary()
if training:
# file_writer = tf.summary.create_file_writer(MODEL_DIR + "/metrics")
# file_writer.set_as_default()
def lr_scheduler(epoch):
lr = 0.01
if epoch < 200:
lr *= 0.99999999
else:
lr *= 0.99999
tf.summary.scalar('Learning Rate', data=lr, step=epoch)
return lr
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=MODEL_DIR)
# lr_callback = tf.keras.callbacks.LearningRateScheduler(lr_scheduler)
if opt.use_all:
model.fit(m_rna_train, [m_rna_train, categorical_label_train], batch_size=opt.batch_size,
epochs=opt.max_epoch,
callbacks=[tensorboard_callback],
validation_data=(m_rna_test, [m_rna_test, categorical_label_test]),
verbose=2)
else:
model.fit(pr_m_rna_train, [pr_m_rna_train, pr_categorical_label_train], batch_size=opt.batch_size,
epochs=opt.max_epoch,
callbacks=[tensorboard_callback],
validation_data=(pr_m_rna_test, [pr_m_rna_test, pr_categorical_label_test]),
verbose=2)
model.save_weights(filepath=checkpoint_path)
print("fitting has just been finished")
else:
model.load_weights(checkpoint_path)
if not opt.use_all:
m_rna_test = pr_m_rna_test
categorical_label_test = pr_categorical_label_test
data_pred = model.predict(m_rna_test, batch_size=opt.batch_size, verbose=2)
""" argmax """
y_pred = np.argmax(data_pred[1], axis=1)
y_gt = label_test # np.argmax(categorical_label_test, axis=1)
if opt.use_all:
confusion_0 = sk.confusion_matrix(y_gt, y_pred, labels=[0, 1, 2, 3, 4, 5])
else:
confusion_0 = sk.confusion_matrix(y_gt, y_pred, labels=[0, 1])
print(confusion_0)
balanced_acc = sk.balanced_accuracy_score(y_gt, y_pred)
acc = sk.accuracy_score(y_gt, y_pred)
""" logits for roc """
y_logit = data_pred[1][:, 0]
x_logit = categorical_label_test[:, 0]
"""save for records"""
np.savetxt(X=m_rna_test, fname=MODEL_DIR + "/test_gene.csv", delimiter=",", fmt='%1.3f')
np.savetxt(X=label, fname=MODEL_DIR + "/label.csv", delimiter=",", fmt='%1.3f')
np.savetxt(X=data_pred[0], fname=MODEL_DIR + "/pred_gene.csv", delimiter=",", fmt='%1.3f')
np.savetxt(X=y_pred, fname=MODEL_DIR + "/pred_label.csv", delimiter=",", fmt='%1.3f')
""" get latent representation """
layer_name = "encoded"
encoded_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output)
encoded_output = encoded_layer_model.predict(m_rna_test)
np.savetxt(X=encoded_output, fname=MODEL_DIR + "/latent_feat.csv", delimiter=",")
""" log """
log1 = open(os.path.join(MODEL_DIR, 'log_blacc.txt'), 'a')
log2 = open(os.path.join(MODEL_DIR, 'log_roc.txt'), 'a')
log3 = open(os.path.join(MODEL_DIR, 'log_acc.txt'), 'a')
if not opt.use_all:
"""Only execute when using PR data (two labels)"""
auc = sk.roc_auc_score(x_logit, y_logit)
fpr, tpr, thresh = sk.roc_curve(x_logit, y_logit)
roc_feat = {'auc': auc, 'fpr': [], 'tpr': []}
for e in fpr:
roc_feat['fpr'].append(str(e))
for e in tpr:
roc_feat['tpr'].append(str(e))
if opt.use_shap:
""" Depth Explainer """
print("Processing SHAP...")
model.load_weights(checkpoint_path)
from matplotlib import colors as plt_colors
layer_name = "category"
encoded_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output)
input_feat = m_rna_train if opt.sample_all == 'all' else pr_m_rna_train
e = shap.GradientExplainer(encoded_layer_model, input_feat)
# e = shap.DeepExplainer(encoded_layer_model, input_feat)
shap_values = e.shap_values(input_feat)
shap_load_gene = '../data_process/gene_pfi.csv' if opt.pfi else '../data_process/gene.csv'
feat_name = np.loadtxt(shap_load_gene, dtype=str, delimiter=",") #[:, 3]
class_inds = np.argsort([-np.abs(shap_values[i]).mean() for i in range(len(shap_values))])
print('class_inds', class_inds)
colors = np.array(['yellowgreen', 'palevioletred', 'lightcoral', 'mediumpurple', 'cornflowerblue',
'orange'])[class_inds]
cmap = plt_colors.ListedColormap(colors)
shap.summary_plot(shap_values, input_feat, feature_names=feat_name, max_display=40,
plot_size=(12.0, 16.0, 2.0), plot_type='bar',
color=cmap, show=True, sort=True,
class_names=['Ovarian (T)', 'Ovarian (N)', 'Prostate (T)', 'Prostate (N)', 'Breast (T)',
'Breast (N)'])
def log_string(out1, out2, out3):
log1.write(str(out1))
log1.write('\n')
log1.flush()
print(out1)
if out2:
log2.write(str(out2['auc']))
log2.write('\n')
roc_x, roc_y = ' '.join(out2['fpr']), ' '.join(out2['tpr'])
log2.write(roc_x)
log2.write('\n')
log2.write(roc_y)
log2.write('\n')
log2.flush()
print(out2)
if out3:
log3.write(str(out3))
log3.write('\n')
log3.flush()
if opt.use_argmax:
if opt.use_all:
confusion_1 = ' '.join(list(np.reshape(confusion_0.astype(str), 36)))
log_string(confusion_1, None, None)
else:
confusion_1 = ' '.join(list(np.reshape(confusion_0.astype(str), 4)))
log_string(confusion_1, roc_feat, acc)
else:
log_string(balanced_acc, None, acc)
if __name__ == '__main__':
if opt.phase == 'train':
if not os.path.exists(os.path.join(MODEL_DIR, 'code/')):
os.makedirs(os.path.join(MODEL_DIR, 'code/'))
os.system('cp -r * %s' % (os.path.join(MODEL_DIR, 'code/'))) # bkp of model def
mlc_ae(True)
elif opt.phase == 'test':
mlc_ae(False)