240 lines (236 with data), 22.7 kB
PK
ÎlK META-INF/þÊ PK
ÍlKøÈ÷wü ü META-INF/MANIFEST.MFManifest-Version: 1.0
Ant-Version: Apache Ant 1.9.4
Created-By: 1.8.0_91-b15 (Oracle Corporation)
Class-Path: lib/weka.jar lib/liblinear-1.92.jar lib/liblinear-java-1.9
6-SNAPSHOT.jar
X-COMMENT: Main-Class will be added automatically by build
PK
ÎlK main/PK
ÎlK
main/java/PK
ÎlK weka/PK
ÎlK weka/classifiers/PK
ÎlK weka/classifiers/functions/PK
ÎlK åþ5T 5T * weka/classifiers/functions/LibLINEAR.classÊþº¾ 4
#å æ ç èé ê ë?PbMÒñ©ü ì?¹ í î ï ð ñ ò ó ô õ ö÷
åø
ù
ú
û
ûü ýþ
ÿ
+å
-
+1 !"#$%&'<(
#)*+*,
+-
./
x01
23 4
Q5
6
è7
89
:
;
.<
=
>
?
@
A
B
#CD
båEFGH
IJ
K
LM
NO
P
Q
RS
TU
VW
XFYZF[h
Q\
Q]
^
è_
`abcdefghi
j
k
lmno
p
qrs
tu
å v w x y z å{ å| å} å~
å
Î
Î
Î
Ò
Ò
Ò
å å
è è è
´t
#
¡ ¢
裤
¥¦ §
¨©
˪
Ë«¬
Îå
Î
®¯
Òå
Ò
˰ å±
˲³´
Øtµ
Ûå
Û¶
Ë
Ë ·
˸¹º¹»¼º ½
¾¿ À
Á
Â
Ã
Ä
Å
Æ
ËÇ È
ÉÊË
ôå
ÌÍÎ
ôÏÐ
Ñ
Ë
Ë}ÒÓ
¾Ô
Õ
.Öר
ËÙ
ÚÛ
PÜ
ôûÝÞ
å
ßàá
âã èäå èæç èèé èêëìí èîï èðñ èòóôõ REVISION Ljava/lang/String;
ConstantValue serialVersionUID J
½9 m_Model Lde/bwaldvogel/liblinear/Model; m_Filter Lweka/filters/Filter; m_Normalize Z TAGS_SVMTYPE [Lweka/core/Tag; DEFAULT_SOLVER $Lde/bwaldvogel/liblinear/SolverType; m_SolverType m_eps D m_epsilon m_Cost m_MaxIts I m_Bias
m_WeightLabel [I m_Weight [D m_ProbabilityEstimates m_NominalToBinary 5Lweka/filters/unsupervised/attribute/NominalToBinary; m_ReplaceMissingValues :Lweka/filters/unsupervised/attribute/ReplaceMissingValues; m_Header Lweka/core/Instances; m_Counts m_x1 m_x0 <init> ()V Code LineNumberTable LocalVariableTable this &Lweka/classifiers/functions/LibLINEAR; getModel !()Lde/bwaldvogel/liblinear/Model;
globalInfo ()Ljava/lang/String; getTechnicalInformation "()Lweka/core/TechnicalInformation; result Lweka/core/TechnicalInformation; listOptions ()Ljava/util/Enumeration; Ljava/util/Vector; en Ljava/util/Enumeration; LocalVariableTypeTable &Ljava/util/Vector<Ljava/lang/Object;>;
StackMapTableö
setOptions ([Ljava/lang/String;)V options [Ljava/lang/String; tmpStrZ
Exceptions
getOptions ()[Ljava/lang/String; Ljava/util/List; $Ljava/util/List<Ljava/lang/String;>;÷
setSVMType (Lweka/core/SelectedTag;)V value Lweka/core/SelectedTag;
setSolverType '(Lde/bwaldvogel/liblinear/SolverType;)V
solverType
getSolverType &()Lde/bwaldvogel/liblinear/SolverType;
getSVMType ()Lweka/core/SelectedTag; SVMTypeTipText getEpsilonParameter ()D setEpsilonParameter (D)V v epsilonParameterTipText getMaximumNumberOfIterations ()I setMaximumNumberOfIterations (I)V maximumNumberOfIterationsTipText setCost getCost costTipText setEps getEps
epsTipText setBias getBias biasTipText normalizeTipText setNormalize (Z)V getNormalize ()Z
setWeights (Ljava/lang/String;)V i
weightsStr tok Ljava/util/StringTokenizer;h
getWeights sb Ljava/lang/StringBuilder;÷ weightsTipText setProbabilityEstimates getProbabilityEstimates probabilityEstimatesTipText
getParameters %()Lde/bwaldvogel/liblinear/Parameter; parameter #Lde/bwaldvogel/liblinear/Parameter;o
getProblem M([[Lde/bwaldvogel/liblinear/FeatureNode;[DI)Lde/bwaldvogel/liblinear/Problem; vx '[[Lde/bwaldvogel/liblinear/FeatureNode; vy max_index problem !Lde/bwaldvogel/liblinear/Problem; instanceToArray <(Lweka/core/Instance;)[Lde/bwaldvogel/liblinear/FeatureNode; idx val instance Lweka/core/Instance; count nodes &[Lde/bwaldvogel/liblinear/FeatureNode; index distributionForInstance (Lweka/core/Instance;)[D k labels prob_estimates
prediction xA? getCapabilities ()Lweka/core/Capabilities; Lweka/core/Capabilities;ø buildClassifier (Lweka/core/Instances;)V z0 z1 inst
classValue d insts y0 y1ùÝ©¼ toString j numNonEmptyClasses start Ljava/lang/StringBuffer; wË getRevision main args <clinit>
SourceFile LibLINEAR.javaLM./01úû545657898:8;<=8>?@AB1J8K8,- java/lang/StringBuilder .A wrapper class for the liblinear classifier.
üýWXØV weka/core/TechnicalInformationþL SRong-En Fan and Kai-Wei Chang and Cho-Jui Hsieh and Xiang-Rui Wang and Chih-Jen Lin
5LIBLINEAR - A Library for Large Linear Classification 2008 ,http://www.csie.ntu.edu.tw/~cjlin/liblinear/
IThe Weka classifier works with version 1.95 of the Java port of LIBLINEAR java/util/Vector weka/core/Optionê Set type of solver (default: 1)
for multi-class classification
0 -- L2-regularized logistic regression (primal)
1 -- L2-regularized L2-loss support vector classification (dual)
2 -- L2-regularized L2-loss support vector classification (primal)
3 -- L2-regularized L1-loss support vector classification (dual)
4 -- support vector classification by Crammer and Singer
5 -- L1-regularized L2-loss support vector classification
6 -- L1-regularized logistic regression
7 -- L2-regularized logistic regression (dual)
for regression
11 -- L2-regularized L2-loss support vector regression (primal)
12 -- L2-regularized L2-loss support vector regression (dual)
13 -- L2-regularized L1-loss support vector regression (dual) S -S <int>L ( Set the cost parameter C
(default: 1) C -C <double> 3 Turn on normalization of input data (default: off) -Z ® Use probability estimation (default: off)
currently for L2-regularized logistic regression, L1-regularized logistic regression or L2-regularized logistic regression (dual)! P -P 8 Set tolerance of termination criterion (default: 0.001) E -E <double> > Set the parameters C of class i to weight[i]*C
(default: 1) W -W <double> T Add Bias term with the given value if >= 0; if < 0, no bias term added (default: 1) B -B <double> K The epsilon parameter in epsilon-insensitive loss function.
(default 0.1) L -L <double> = The maximum number of iterations to perform.
(default 1000) -I <int>[\ö\ weka/core/SelectedTag23Lqr !"¢
ef java/util/ArrayList -S÷#$ ü% -C~ü& -E~ -B~V -W£ -L}~ -I' java/lang/String()*+,-./0uv The type of SVM to use. ?The epsilon parameter of the epsilon insensitive loss function. ,The maximum number of iterations to perform. The cost parameter C. +The tolerance of the termination criterion. aIf >= 0, a bias term with that value is added; otherwise (<0) no bias term is added (default: 1). Whether to normalize the data. java/util/StringTokenizer L123V BThe weights to use for the classes, if empty 1 is used by default. Whether to generate probability estimates instead of -1/+1 for classification problems (currently for L2-regularized logistic regression only!) !de/bwaldvogel/liblinear/ParameterL45 "java/lang/IllegalArgumentException vx and vy must have same sizeL de/bwaldvogel/liblinear/Problem6<7<88Â9:A;»<=>? #de/bwaldvogel/liblinear/FeatureNodeL@AEFBCDEFCDG²³HIJKLM5N5O5 weka/core/WekaException Yprobability estimation is currently only supported for L2-regularized logistic regressionPQRSTUVWÅÆøXMY[\]^_\`\a\b\c^d\e Solver üf is not supported!g\hÊ weka/core/InstancesLÊiM 8weka/filters/unsupervised/attribute/ReplaceMissingValuesjklm 3weka/filters/unsupervised/attribute/NominalToBinary¶nÎ~o java/lang/Exception LAll class values are the same. At least two class values should be different -weka/filters/unsupervised/attribute/NormalizepIAqrùst weka/core/Instance»<uvwx1yMzM{Mª«¥¦|}L~GHST LibLINEAR: No model built yet. java/lang/StringBuffer LibLINEAR wrapper
ü Model for class s + -
*
(normalized) V
'NOTE: CLASS HAS ALSO BEEN NORMALIZED.
$weka/classifiers/functions/LibLINEAR 1.9.0
weka/core/Tag +L2-regularized logistic regression (primal)L ;L2-regularized L2-loss support vector classification (dual)5 =L2-regularized L2-loss support vector classification (primal)5 ;L2-regularized L1-loss support vector classification (dual)5 3support vector classification by Crammer and Singer5 4L1-regularized L2-loss support vector classification "L1-regularized logistic regression )L2-regularized logistic regression (dual)5 9L2-regularized L2-loss support vector regression (primal)5 7L2-regularized L2-loss support vector regression (dual)5 7L2-regularized L1-loss support vector regression (dual) #weka/classifiers/AbstractClassifier %weka/core/TechnicalInformationHandler java/util/Enumeration java/util/List weka/core/Capabilities java/util/Iterator "de/bwaldvogel/liblinear/SolverType L2R_L2LOSS_SVC_DUAL append -(Ljava/lang/String;)Ljava/lang/StringBuilder; #weka/core/TechnicalInformation$Type Type InnerClasses MISC %Lweka/core/TechnicalInformation$Type; ((Lweka/core/TechnicalInformation$Type;)V $weka/core/TechnicalInformation$Field Field AUTHOR &Lweka/core/TechnicalInformation$Field; setValue ;(Lweka/core/TechnicalInformation$Field;Ljava/lang/String;)V TITLE YEAR URL NOTE :(Ljava/lang/String;Ljava/lang/String;ILjava/lang/String;)V
addElement (Ljava/lang/Object;)V hasMoreElements nextElement ()Ljava/lang/Object; elements weka/core/Utils getOption ((C[Ljava/lang/String;)Ljava/lang/String; length java/lang/Integer parseInt (Ljava/lang/String;)I (I[Lweka/core/Tag;)V getId java/lang/Double parseDouble (Ljava/lang/String;)D getFlag (C[Ljava/lang/String;)Z add (Ljava/lang/Object;)Z (I)Ljava/lang/StringBuilder; (D)Ljava/lang/StringBuilder; size toArray (([Ljava/lang/Object;)[Ljava/lang/Object; getTags ()[Lweka/core/Tag; getSelectedTag ()Lweka/core/Tag; getID getById '(I)Lde/bwaldvogel/liblinear/SolverType; '(Ljava/lang/String;Ljava/lang/String;)V countTokens nextToken +(Lde/bwaldvogel/liblinear/SolverType;DDID)V ([D[I)V l n bias #[[Lde/bwaldvogel/liblinear/Feature; y numValues (I)I
classIndex valueSparse (I)D (ID)V
numAttributes input (Lweka/core/Instance;)Z
batchFinished output ()Lweka/core/Instance; weka/filters/Filter
numClasses classAttribute ()Lweka/core/Attribute; weka/core/Attribute isNominal L2R_LR L2R_LR_DUAL L1R_LR de/bwaldvogel/liblinear/Model getLabels ()[I de/bwaldvogel/liblinear/Linear predictProbability F(Lde/bwaldvogel/liblinear/Model;[Lde/bwaldvogel/liblinear/Feature;[D)D predict D(Lde/bwaldvogel/liblinear/Model;[Lde/bwaldvogel/liblinear/Feature;)D
disableAll !weka/core/Capabilities$Capability
Capability NOMINAL_ATTRIBUTES #Lweka/core/Capabilities$Capability; enable &(Lweka/core/Capabilities$Capability;)V NUMERIC_ATTRIBUTES DATE_ATTRIBUTES MISSING_VALUES
NOMINAL_CLASS enableDependency
NUMERIC_CLASS ordinal -(Ljava/lang/Object;)Ljava/lang/StringBuilder; MISSING_CLASS_VALUES testWithFail deleteWithMissingClass setInputFormat (Lweka/core/Instances;)Z useFilter A(Lweka/core/Instances;Lweka/filters/Filter;)Lweka/core/Instances; (I)Lweka/core/Instance; numInstances setIgnoreClass iterator ()Ljava/util/Iterator; hasNext next java/lang/Math max (II)I m_Debug disableDebugOutput enableDebugOutput resetRandom train e(Lde/bwaldvogel/liblinear/Problem;Lde/bwaldvogel/liblinear/Parameter;)Lde/bwaldvogel/liblinear/Model; (Lweka/core/Instances;I)V getFeatureWeights ()[D ,(Ljava/lang/String;)Ljava/lang/StringBuffer; (I)Ljava/lang/String; abs (D)D getNumDecimalPlaces doubleToString (DII)Ljava/lang/String; attribute (I)Lweka/core/Attribute; name
runClassifier 3(Lweka/classifiers/Classifier;[Ljava/lang/String;)V (ILjava/lang/String;)V L2R_L2LOSS_SVC L2R_L1LOSS_SVC_DUAL MCSVM_CS L1R_L2LOSS_SVC L2R_L2LOSS_SVR L2R_L2LOSS_SVR_DUAL L2R_L1LOSS_SVR_DUAL !# $ %&