## Generated by BioDiscML (Leclercq et al. 2018)##
# Project: prostateSingh
# ID: misc.VFI_ACC_BF_12_1_451
# Classifier: misc.VFI -B 0.4
# Optimizer: ACC
# Feature search mode: BF
# 10 fold cross validation performance
ACC: 1
AUC: 1
AUPRC: 1
TPR: 1
TNR: 1
MCC: 1
BER: 0
FPR: 0
FNR: 0
PPV: 1
FDR: 0
recall: 1
Fscore: 1
kappa: 1
matrix: [50 0] [0 52]
# LOOCV (Leave-One-Out Cross Validation) performance
ACC: 0.9902
AUC: 1
AUPRC: 1
TPR: 0.9902
TNR: 0.9906
MCC: 0.9806
BER: 0.0096
FPR: 0.0094
FNR: 0.0098
PPV: 0.9904
FDR: 0.0096
recall: 0.9902
Fscore: 0.9902
kappa: 0.9804
matrix: [50 0] [1 51]
#Repeated Holdout evaluation performance on TRAIN set, 100 times weighted average (and standard deviation) on random seeds
Average weighted ACC: 0.929
Average weighted AUC: 0.954
Average weighted AUPRC: 0.953
Average weighted SEN: 0.929
Average weighted SPE: 0.93
Average weighted MCC: 0.863
Average weighted BER: 0.071
#Bootstrap evaluation performance on TRAIN set, 100 times weighted average (and standard deviation) on random seeds
Average weighted ACC: 0.927
Average weighted AUC: 0.947
Average weighted AUPRC: 0.944
Average weighted SEN: 0.927
Average weighted SPE: 0.929
Average weighted MCC: 0.858
Average weighted BER: 0.072
#Bootstrap .632+ rule calculated on TRAIN set, 100 folds with random seeds
0.063
# Selected Attributes (Total attributes:12). Occurrences are shown if you chose combined model
1944_f_at
216_at
31427_at
31687_f_at
32269_at
34310_at
35773_i_at
36629_at
36635_at
39637_at
40783_s_at
41430_at
# Attribute ranking by merit calculated by information gain
0.3628 216_at
0.1328 36629_at
0.1283 34310_at
0.1167 40783_s_at
0.1167 35773_i_at
0.1139 41430_at
0.1089 36635_at
0.1027 31427_at
0.0972 39637_at
0.0972 1944_f_at
0.0972 31687_f_at
0.0972 32269_at
# Correlated features (Spearman)
FeatureInSignature SpearmanCorrelationScore CorrelatedFeature
216_at 0.974 38406_f_at
# Correlated features (Pearson)
FeatureInSignature SpearmanCorrelationScore CorrelatedFeature
216_at 0.954 38406_f_at
## End of file ##