[418bf5]: / benchmark / prostate-singh / prostateSingh_d.bayes.NaiveBayes_-K_AUC_FB.details.txt

Download this file

97 lines (85 with data), 2.1 kB

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
## Generated by BioDiscML (Leclercq et al. 2018)##
# Project: prostateSingh
# ID: bayes.NaiveBayes_AUC_FB_10_0.9902_615
# Classifier: bayes.NaiveBayes -K
# Optimizer: AUC
# Feature search mode: FB
# 10 fold cross validation performance
ACC: 0.9902
AUC: 0.9996
AUPRC: 0.9996
TPR: 0.9902
TNR: 0.9898
MCC: 0.9806
BER: 0.01
FPR: 0.0102
FNR: 0.0098
PPV: 0.9904
FDR: 0.0096
recall: 0.9902
Fscore: 0.9902
kappa: 0.9804
matrix: [49 1] [0 52]
# LOOCV (Leave-One-Out Cross Validation) performance
ACC: 0.9804
AUC: 0.9981
AUPRC: 0.9981
TPR: 0.9804
TNR: 0.9796
MCC: 0.9615
BER: 0.02
FPR: 0.0204
FNR: 0.0196
PPV: 0.9811
FDR: 0.0189
recall: 0.9804
Fscore: 0.9804
kappa: 0.9607
matrix: [48 2] [0 52]
#Repeated Holdout evaluation performance on TRAIN set, 100 times weighted average (and standard deviation) on random seeds
Average weighted ACC: 0.967
Average weighted AUC: 0.998
Average weighted AUPRC: 0.998
Average weighted SEN: 0.967
Average weighted SPE: 0.97
Average weighted MCC: 0.937
Average weighted BER: 0.031
#Bootstrap evaluation performance on TRAIN set, 100 times weighted average (and standard deviation) on random seeds
Average weighted ACC: 0.955
Average weighted AUC: 0.991
Average weighted AUPRC: 0.991
Average weighted SEN: 0.955
Average weighted SPE: 0.958
Average weighted MCC: 0.913
Average weighted BER: 0.043
#Bootstrap .632+ rule calculated on TRAIN set, 100 folds with random seeds
0.038
# Selected Attributes (Total attributes:10). Occurrences are shown if you chose combined model
1184_at
1944_f_at
38779_r_at
39220_at
40282_s_at
40304_at
41430_at
41817_g_at
424_s_at
914_g_at
# Attribute ranking by merit calculated by information gain
0.3802 40282_s_at
0.3564 914_g_at
0.1616 41817_g_at
0.1328 39220_at
0.1237 40304_at
0.1139 41430_at
0.1027 38779_r_at
0.0972 1944_f_at
0.0972 424_s_at
0.0972 1184_at
# Correlated features (Spearman)
FeatureInSignature SpearmanCorrelationScore CorrelatedFeature
#nothing found !
# Correlated features (Pearson)
FeatureInSignature SpearmanCorrelationScore CorrelatedFeature
#nothing found !
## End of file ##