|
a |
|
b/src/biodiscml/demo.java |
|
|
1 |
/* |
|
|
2 |
* |
|
|
3 |
*/ |
|
|
4 |
package biodiscml; |
|
|
5 |
|
|
|
6 |
import java.io.FileWriter; |
|
|
7 |
import java.io.PrintWriter; |
|
|
8 |
import java.util.HashMap; |
|
|
9 |
|
|
|
10 |
/** |
|
|
11 |
* |
|
|
12 |
* @author mik |
|
|
13 |
*/ |
|
|
14 |
public class demo { |
|
|
15 |
|
|
|
16 |
// public static String folder = "/home/mickael/ownCloud/"; |
|
|
17 |
public static String folder = "E:\\cloud\\"; |
|
|
18 |
// public static String folder = "C:\\Users\\Mickael\\ownCloud\\"; |
|
|
19 |
|
|
|
20 |
public static void main(String[] args) { |
|
|
21 |
System.out.println("=== Demo mode ==="); |
|
|
22 |
//trainingExecution(); |
|
|
23 |
//testingExecution(); |
|
|
24 |
bestModel(); |
|
|
25 |
//benchmark(); |
|
|
26 |
} |
|
|
27 |
|
|
|
28 |
private static void trainingExecution() { |
|
|
29 |
try { |
|
|
30 |
//String s[] = {"-config " + folder + "Data\\TCGA_PRAD\\datamining\\config.conf -train"}; |
|
|
31 |
//String s[] = {"-config " + folder + "Data\\TCGA_PRAD\\datamining\\time\\config.conf -train"}; |
|
|
32 |
//String s[] = {"-config " + folder + "Projects/loreal/VESPA/datamining//config_vespa.conf -train"}; |
|
|
33 |
//String s[] = {"-config " + folder + "/Projects/Benjamin/Collaboration-CHUL-Quebec/1_Prostate/READY_TO_USE_for_Brute_force_X/datamining/2_Genes+clinic/config.conf -train"}; |
|
|
34 |
|
|
|
35 |
//String s[] = {"-config config_example_2class.conf -train"}; |
|
|
36 |
String s[] = {"-config " + folder + "Code\\BruteForceML\\benchmark\\CNS_test/config.conf -train"}; |
|
|
37 |
//String s[] = {"-config " + folder + "Code/BruteForceML/benchmark/Benjamin_signature/config.conf -train"}; |
|
|
38 |
//String s[] = {"-config " + folder + "Projects\\bacteria\\datamining\\config.conf -train"}; |
|
|
39 |
Main.main(s); |
|
|
40 |
} catch (Exception e) { |
|
|
41 |
e.printStackTrace(); |
|
|
42 |
} |
|
|
43 |
} |
|
|
44 |
|
|
|
45 |
public static void bestModel() { |
|
|
46 |
Main m = new Main(); |
|
|
47 |
//demo Benjamin |
|
|
48 |
// m.wd = folder + "Projects\\Benjamin\\Collaboration - CHUL - Quebec\\1_Prostate\\READY_TO_USE_for_Brute_force_X\\datamining\\"; |
|
|
49 |
// m.configFile = m.wd + "config.conf"; |
|
|
50 |
// m.setConfiguration(); |
|
|
51 |
// m.wd = folder + "Projects\\Benjamin\\Collaboration - CHUL - Quebec\\1_Prostate\\READY_TO_USE_for_Brute_force_X\\datamining\\"; |
|
|
52 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
53 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
54 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
55 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
56 |
// "classification"); |
|
|
57 |
// //mint |
|
|
58 |
// m.wd = folder + "Code/BruteForceML/benchmark/mint/"; |
|
|
59 |
// m.configFile = m.wd + "config.conf"; |
|
|
60 |
// m.setConfiguration(); |
|
|
61 |
// m.wd = folder + "Code/BruteForceML/benchmark/mint/"; |
|
|
62 |
// m.hmTrainingBestModelList.put("trees.RandomForest_AUC_BF_16_0.9571_77", "1"); |
|
|
63 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
64 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
65 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
66 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
67 |
// "classification"); |
|
|
68 |
// //mint |
|
|
69 |
m.wd = folder + "Code/BruteForceML/benchmark/CNS_test/"; |
|
|
70 |
m.configFile = m.wd + "config.conf"; |
|
|
71 |
m.setConfiguration(); |
|
|
72 |
m.wd = folder + "Code/BruteForceML/benchmark/CNS_test/"; |
|
|
73 |
String CLASSIFICATION_FILE = m.wd + m.project + "a.regression.data_to_train.csv"; // output of Training(), models performances |
|
|
74 |
String TRAINING_RESULTS_FILE = m.wd + m.project + "c.regression.results.csv"; // output of Training(), models performances |
|
|
75 |
String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.RELIEFF.csv"; // output of Training(), feature selection result |
|
|
76 |
BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
77 |
"regression"); |
|
|
78 |
//bacteria |
|
|
79 |
// m.wd = folder + "Projects\\bacteria\\datamining\\"; |
|
|
80 |
// m.configFile = m.wd + "config.conf"; |
|
|
81 |
// m.setConfiguration(); |
|
|
82 |
// m.wd = folder + "Projects\\bacteria\\datamining\\"; |
|
|
83 |
// m.hmTrainingBestModelList.put("trees.RandomForest_AUC_B_25_0.9531_907", "1"); |
|
|
84 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
85 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
86 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
87 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
88 |
// "classification"); |
|
|
89 |
// //benjamin |
|
|
90 |
// m.wd = folder + "Code/BruteForceML/benchmark/Benjamin_prostate/"; |
|
|
91 |
// m.configFile = m.wd + "config.conf"; |
|
|
92 |
// m.setConfiguration(); |
|
|
93 |
// m.wd = folder + "Code/BruteForceML/benchmark/Benjamin_prostate/"; |
|
|
94 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
95 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
96 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
97 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
98 |
// "classification"); |
|
|
99 |
// //golub |
|
|
100 |
// m.wd = folder + "Code/BruteForceML/benchmark/brain/"; |
|
|
101 |
// m.configFile = m.wd + "config.conf"; |
|
|
102 |
// m.setConfiguration(); |
|
|
103 |
// m.wd = folder + "Code/BruteForceML/benchmark/brain/"; |
|
|
104 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
105 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
106 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
107 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
108 |
// "classification"); |
|
|
109 |
// //demo dreamchallenge |
|
|
110 |
// m.wd = folder + "Projects\\dreamchallenge\\proteogenomics\\SUB2_ML\\"; |
|
|
111 |
// m.configFile = m.wd + "config.conf"; |
|
|
112 |
// m.setConfiguration(); |
|
|
113 |
// m.wd = folder + "Projects\\dreamchallenge\\proteogenomics\\SUB2_ML\\"; |
|
|
114 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.regression.data_to_train.csv"; // output of Training(), models performances |
|
|
115 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.regression.results.csv"; // output of Training(), models performances |
|
|
116 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.RELIEFF.csv"; // output of Training(), feature selection result |
|
|
117 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
118 |
// "regression"); |
|
|
119 |
//demo vespa |
|
|
120 |
// m.wd = folder + "Projects\\loreal\\VESPA\\datamining\\"; |
|
|
121 |
// m.configFile = m.wd + "config_vespa.conf"; |
|
|
122 |
// m.setConfiguration(); |
|
|
123 |
// m.wd = folder + "Projects\\loreal\\VESPA\\datamining\\"; |
|
|
124 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
125 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
126 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
127 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
128 |
// "classification"); |
|
|
129 |
//demo DATA |
|
|
130 |
// m.configFile = "config_example_2class.conf"; |
|
|
131 |
// m.setConfiguration(); |
|
|
132 |
// m.wd = ""; |
|
|
133 |
// String CLASSIFICATION_FILE = m.wd + m.project + "a.classification.data_to_train.csv"; // output of Training(), models performances |
|
|
134 |
// String TRAINING_RESULTS_FILE = m.wd + m.project + "c.classification.results.csv"; // output of Training(), models performances |
|
|
135 |
// String FEATURE_SELECTION_FILE = m.wd + m.project + "b.featureSelection.infoGain.csv"; // output of Training(), feature selection result |
|
|
136 |
// BestModelSelectionAndReport b = new BestModelSelectionAndReport(CLASSIFICATION_FILE, FEATURE_SELECTION_FILE, TRAINING_RESULTS_FILE, |
|
|
137 |
// "classification"); |
|
|
138 |
} |
|
|
139 |
|
|
|
140 |
public static void testingExecution() { |
|
|
141 |
try { |
|
|
142 |
// String s[] = {"-test -model gdx_data_.misc.VFI_-B0.6.txt.model " |
|
|
143 |
// + "-testfiles gdx.545patients.clinical.csv gdx.1742patients.expr.csv " |
|
|
144 |
// //+ "-prefixes clin expr " |
|
|
145 |
// + "-mergingID patient -separator \\t -classification -keyword BCR_sensor"}; |
|
|
146 |
String s[] = {"-test -model " + folder + "Data\\TCGA_PRAD\\datamining\\TCGA_BCR_.misc.VFI_-B0.6.txt.model " |
|
|
147 |
+ "-testfiles " + folder + "Data\\TCGA_PRAD\\datamining\\geneExpression.log2RUVg.csv" |
|
|
148 |
+ " " + folder + "Data\\TCGA_PRAD\\datamining\\clinical_test.csv " |
|
|
149 |
+ "-mergingID Patient -separator \\t -classification -keyword BCR_sensor"}; |
|
|
150 |
for (String s1 : s) { |
|
|
151 |
System.out.print(s1); |
|
|
152 |
} |
|
|
153 |
System.out.println(""); |
|
|
154 |
Main.main(s); |
|
|
155 |
} catch (Exception e) { |
|
|
156 |
e.printStackTrace(); |
|
|
157 |
} |
|
|
158 |
} |
|
|
159 |
|
|
|
160 |
private static void benchmark() { |
|
|
161 |
try { |
|
|
162 |
PrintWriter pw = new PrintWriter(new FileWriter("benchmark_3.txt")); |
|
|
163 |
pw.println("FeaturesLimit\tAUC_Train\tAUC_Test"); |
|
|
164 |
for (int i = 5; i <= 200; i = i + 5) { |
|
|
165 |
//train |
|
|
166 |
Main.hmTrainFiles = new HashMap<>(); |
|
|
167 |
Main.needConfigFile = true; |
|
|
168 |
Main.testing = false; |
|
|
169 |
Main.training = true; |
|
|
170 |
System.out.println("\n-------------\nTRAIN " + i); |
|
|
171 |
String s[] = {"-config " + folder + "Data\\TCGA_PRAD\\datamining\\config_opt.conf -train"}; |
|
|
172 |
Main.maxNumberOfFeaturesInModel = i; |
|
|
173 |
Main.main(s); |
|
|
174 |
String train = Main.bench_AUC; |
|
|
175 |
//test |
|
|
176 |
Main.hmTrainFiles = new HashMap<>(); |
|
|
177 |
Main.configFile = ""; |
|
|
178 |
Main.needConfigFile = false; |
|
|
179 |
Main.testing = true; |
|
|
180 |
Main.training = false; |
|
|
181 |
Main.project = "outfile"; |
|
|
182 |
System.out.println("\n-------------\nTEST " + i); |
|
|
183 |
String s2[] = {"-test -model " + folder + "Data\\TCGA_PRAD\\datamining\\bench_.misc.VFI_-B0.6.txt.model " |
|
|
184 |
+ "-testfiles " + folder + "Data\\TCGA_PRAD\\datamining\\geneExpression.log2RUVg.csv" |
|
|
185 |
+ " " + folder + "Data\\TCGA_PRAD\\datamining\\clinical_test.csv " |
|
|
186 |
+ "-mergingID Patient -separator \\t -classification -keyword BCR_sensor"}; |
|
|
187 |
Main.main(s2); |
|
|
188 |
String test = Main.bench_AUC; |
|
|
189 |
pw.println(i + "\t" + train + "\t" + test); |
|
|
190 |
pw.flush(); |
|
|
191 |
} |
|
|
192 |
} catch (Exception e) { |
|
|
193 |
} |
|
|
194 |
} |
|
|
195 |
|
|
|
196 |
} |