|
a |
|
b/config.conf |
|
|
1 |
# #### BioDiscML config file #### # |
|
|
2 |
# See https://github.com/mickaelleclercq/BioDiscML/tree/master/release/Test_datasets |
|
|
3 |
# for examples. |
|
|
4 |
|
|
|
5 |
# IMPORTANT: for classification, do not use classes with numeric attributes. Else, |
|
|
6 |
# they will be interpreted as a regression problem. |
|
|
7 |
|
|
|
8 |
##################### |
|
|
9 |
### BASIC OPTIONS ### |
|
|
10 |
##################### |
|
|
11 |
|
|
|
12 |
## Working directory. If local execution, don't set it. |
|
|
13 |
# wd must be defined if another classifiers.conf is provided |
|
|
14 |
# Default: wd=*empty* (local directory) |
|
|
15 |
|
|
|
16 |
#wd=working_directory |
|
|
17 |
|
|
|
18 |
|
|
|
19 |
## Project name, used as prefix for outfiles. |
|
|
20 |
# Default: project=myProject |
|
|
21 |
|
|
|
22 |
project=myProject |
|
|
23 |
|
|
|
24 |
|
|
|
25 |
## Type of classification: Classification |
|
|
26 |
# Set to true if we perform a classification (nominal class). |
|
|
27 |
# Default: doClassification=false |
|
|
28 |
|
|
|
29 |
doClassification=false |
|
|
30 |
|
|
|
31 |
|
|
|
32 |
# If true, set the column class name to classify. |
|
|
33 |
# Default: classificationClassName=class |
|
|
34 |
|
|
|
35 |
classificationClassName=class |
|
|
36 |
|
|
|
37 |
|
|
|
38 |
## Type of classification: Regression |
|
|
39 |
# Set to true if we perform a regression (numeric class). |
|
|
40 |
# Default:doRegression=false |
|
|
41 |
doRegression=false |
|
|
42 |
|
|
|
43 |
# If true, set the column class name to classify. |
|
|
44 |
# Default: regressionClassName=class |
|
|
45 |
|
|
|
46 |
regressionClassName=class |
|
|
47 |
|
|
|
48 |
|
|
|
49 |
## Training input files |
|
|
50 |
# Set infiles here if you have several dataset with a common ID column that will |
|
|
51 |
# be used for merging (see mergingID). Only IDs existing in all files will be kept |
|
|
52 |
# for training, those missing in one of the file will be ignored. |
|
|
53 |
# All decimal separated values commas (,) will be changed to dots (.). |
|
|
54 |
# You also must remove special symbols within your data (e.g.: %/\*"':éèà). |
|
|
55 |
# Usage: trainFile=filename_in_working_directory,description |
|
|
56 |
# The description will be used as a prefix for features of the file to avoid |
|
|
57 |
# duplicated names. It can be left empty if there is no risk of duplicated names. |
|
|
58 |
# (ex: trainFile=myproteinsfile, protein |
|
|
59 |
# trainFile=mygenesfile, genes |
|
|
60 |
# trainFile=mymetadatafile). |
|
|
61 |
# Default: trainFile=*empty* |
|
|
62 |
|
|
|
63 |
#trainFile=trainFile1.csv, description |
|
|
64 |
#trainFile=trainFile2.csv |
|
|
65 |
|
|
|
66 |
## Predict new data input files |
|
|
67 |
# If you have you own blind test dataset or new data, you can run biodiscml using |
|
|
68 |
# the -predict option (java -jar biodiscml.jar -config config.conf -predict). |
|
|
69 |
# This function will need two defined input files: |
|
|
70 |
# - A newData file (same format and structure as the training input files. |
|
|
71 |
# This file must contain at least all elements of the retained signature of the |
|
|
72 |
# selected best model features. Features present in the newData file, but absent from |
|
|
73 |
# the signature of the model will simply be ignored during the prediction) |
|
|
74 |
# - A model file (produced during a previous execution of biodiscml where a best |
|
|
75 |
# model have been identified) |
|
|
76 |
# Usage: newDataFile=filename_in_working_directory,description |
|
|
77 |
# The description will be used as a prefix for features of the file to avoid |
|
|
78 |
# duplicated names. It can be left empty if there is no risk of duplicated names. |
|
|
79 |
# (ex: newDataFile=myproteinsfile, protein |
|
|
80 |
# newDataFile=mygenesfile, genes |
|
|
81 |
# newDataFile=mymetadatafile). |
|
|
82 |
# Default: newDataFile=*empty* |
|
|
83 |
# Default: modelFile=*empty* |
|
|
84 |
|
|
|
85 |
#newDataFile=newDataFile1.csv, description |
|
|
86 |
#newDataFile=newDataFile2.csv |
|
|
87 |
#modelFile=model.model |
|
|
88 |
|
|
|
89 |
|
|
|
90 |
## Merging |
|
|
91 |
# Merging identifier, used if you have many files to merge. It is expected to be |
|
|
92 |
# found in the first column of every files. |
|
|
93 |
# Only rows containing identifiers that exist in all files will be considered in |
|
|
94 |
# the analysis. |
|
|
95 |
# Default: mergingID=*empty* |
|
|
96 |
|
|
|
97 |
#mergingID=identifier |
|
|
98 |
|
|
|
99 |
|
|
|
100 |
## Sampling |
|
|
101 |
# Perform sampling to create a random validation set not used during training and |
|
|
102 |
# used for further evaluation. |
|
|
103 |
# Default: sampling=true |
|
|
104 |
|
|
|
105 |
sampling=true |
|
|
106 |
|
|
|
107 |
# The samplingFold option separate the set in x parts, keep 1 for validation, others |
|
|
108 |
# for training. |
|
|
109 |
# e.g. samplingFold=3 means that the validation set will be composed of 1/3 of the |
|
|
110 |
# input data. |
|
|
111 |
# Ignored if sampling=false |
|
|
112 |
# Default: samplingFold=3 |
|
|
113 |
|
|
|
114 |
samplingFold=3 |
|
|
115 |
|
|
|
116 |
# Instead of random sampling, you can provide a validation file on which the models |
|
|
117 |
# will be tested. |
|
|
118 |
# Note that the validation file must contain the same structure and features as the |
|
|
119 |
# train file. |
|
|
120 |
# You can also provide several validation files, they will be merged. |
|
|
121 |
# If set, samplingFold options will be ignored. |
|
|
122 |
# Ignored if sampling=false |
|
|
123 |
# Default: validationFile=*empty* |
|
|
124 |
|
|
|
125 |
#validationFile=validationFile1.csv |
|
|
126 |
|
|
|
127 |
|
|
|
128 |
## Feature exclusion |
|
|
129 |
# Features to exclude from the dataset (separated by commas(,)). |
|
|
130 |
# Do not exclude the identifier (usually the first column). |
|
|
131 |
# Default: excluded=*empty* |
|
|
132 |
|
|
|
133 |
#excluded=columnA,columnB |
|
|
134 |
|
|
|
135 |
|
|
|
136 |
## Best model auto-selection |
|
|
137 |
# A specified number of models will be generated here, along with various performance |
|
|
138 |
# metrics and correlated features for each one. Choose how many best models to |
|
|
139 |
# generate and the metric on which the models will be sorted. |
|
|
140 |
# Instead of a specific number of models, a threshold can also be set. |
|
|
141 |
# Models will be selected based on both numberOfBestModels and |
|
|
142 |
# numberOfBestModelsSortingMetricThreshold conditions |
|
|
143 |
# Metrics can be any column of the results file: |
|
|
144 |
# We prefer those for classification: TEST_MCC, TEST_BER, TRAIN_TEST_BS_MCC, |
|
|
145 |
# TRAIN_TEST_BS_BER, AVG_BER, AVG_MCC |
|
|
146 |
# We prefer those for regression: TEST_CC, TEST_RMSE, TRAIN_TEST_BS_CC, |
|
|
147 |
# TRAIN_TEST_BS_RMSE, AVG_RMSE, AVG_CC |
|
|
148 |
# Examples: AVG_MCC at 0.6, AVG_RMSE at 0.3, AVG_CC at 0.8 |
|
|
149 |
# See commands in readme.txt to extract specific models |
|
|
150 |
# Default: computeBestModel=true |
|
|
151 |
# numberOfBestModels=1 |
|
|
152 |
# numberOfBestModelsSortingMetric=AVG_MCC |
|
|
153 |
# numberOfBestModelsSortingMetricThreshold=0.1 |
|
|
154 |
|
|
|
155 |
computeBestModel=true |
|
|
156 |
numberOfBestModels=1 |
|
|
157 |
numberOfBestModelsSortingMetric=AVG_MCC |
|
|
158 |
numberOfBestModelsSortingMetricThreshold=0.1 |
|
|
159 |
|
|
|
160 |
|
|
|
161 |
## Combine models |
|
|
162 |
# If true, only one model will be computed using a combination of all models |
|
|
163 |
# selected with best models options. |
|
|
164 |
# Combination rules: |
|
|
165 |
# AVG (Average of probabilities) |
|
|
166 |
# PROD (Product of probabilities) |
|
|
167 |
# MAJ (Majority voting) |
|
|
168 |
# MED (Median) |
|
|
169 |
# Default: combineModels=false |
|
|
170 |
# combinationRule=AVG |
|
|
171 |
|
|
|
172 |
combineModels=false |
|
|
173 |
combinationRule=AVG |
|
|
174 |
|
|
|
175 |
|
|
|
176 |
######################## |
|
|
177 |
### ADVANCED OPTIONS ### |
|
|
178 |
######################## |
|
|
179 |
|
|
|
180 |
## Debug to show more outputs |
|
|
181 |
# 2 levels of verbose, debug and debug2 |
|
|
182 |
# Also possibility to print failed models with error explanation |
|
|
183 |
# Default: debug=false |
|
|
184 |
# debug2=false |
|
|
185 |
# printFailedModels=false |
|
|
186 |
|
|
|
187 |
debug=false |
|
|
188 |
debug2=false |
|
|
189 |
printFailedModels=false |
|
|
190 |
|
|
|
191 |
## Maximum number of cpus to use (enter a value or "max"). |
|
|
192 |
# BioDiscML runs in low priority by regularly checking cpus available. So |
|
|
193 |
# you can execute other softwares on your server and it will adapt itself. |
|
|
194 |
# Just be careful to available memory, limit number of cpus used to avoid out |
|
|
195 |
# of memory exception. |
|
|
196 |
# Default: cpus=max |
|
|
197 |
|
|
|
198 |
cpus=max |
|
|
199 |
|
|
|
200 |
|
|
|
201 |
## The separator (delimiter) of infiles will be detected automatically. |
|
|
202 |
# It is however possible to set it, but it must exist for all files. |
|
|
203 |
# Default: separator=*empty* |
|
|
204 |
|
|
|
205 |
#separator=\t |
|
|
206 |
|
|
|
207 |
## Leave-One-Out cross validation |
|
|
208 |
# If you have a very large set of samples (more than 2000), it may be better |
|
|
209 |
# to skip Leave-One-Out cross validation by setting loocv to false |
|
|
210 |
# Default: loocv=true |
|
|
211 |
|
|
|
212 |
loocv=true |
|
|
213 |
|
|
|
214 |
|
|
|
215 |
## Criterion (metrics) optimizers |
|
|
216 |
# To test if a model generated with a feature subset is better with another |
|
|
217 |
# subset, we use various criterions as comparison metrics. |
|
|
218 |
# You can limit the list of criterions if wanted. |
|
|
219 |
# Avalaible criterions for classification:AUC, MCC, FDR, BER, ACC, TPR, TNR, |
|
|
220 |
# kappa, AUPRC, Fscore, Precision, Recall, TP+FN |
|
|
221 |
# Default: coptimizers=AUC, MCC, FDR, BER, ACC |
|
|
222 |
|
|
|
223 |
coptimizers=AUC, MCC, FDR, BER, ACC |
|
|
224 |
|
|
|
225 |
|
|
|
226 |
## Search modes |
|
|
227 |
# various search modes are implemented, including topX features according to |
|
|
228 |
# information gain ranking, stepwise search (Forward(F), Forward-Backward(FB), |
|
|
229 |
# Backward(B) and Backward-Forward(BF)) and all features (all) |
|
|
230 |
searchmodes=F,FB,B,BF,top1,top5,top10,top15,top20,top30,top40,top50,top75,top100 |
|
|
231 |
|
|
|
232 |
# Regression criterions |
|
|
233 |
# Available criterions for regression: CC, MAE, RMSE, RAE, RRSE |
|
|
234 |
# Default: roptimizers=CC, RMSE |
|
|
235 |
|
|
|
236 |
roptimizers=CC, RMSE |
|
|
237 |
|
|
|
238 |
|
|
|
239 |
## Maximum number of features kept after feature selection ranking. |
|
|
240 |
# Higher this number is, longer will be the training. |
|
|
241 |
# Default: maxNumberOfSelectedFeatures = 1000 |
|
|
242 |
|
|
|
243 |
maxNumberOfSelectedFeatures = 1000 |
|
|
244 |
|
|
|
245 |
|
|
|
246 |
## Maximum number of features models can have. |
|
|
247 |
# Default: maxNumberOfFeaturesInModel = 200 |
|
|
248 |
|
|
|
249 |
maxNumberOfFeaturesInModel = 200 |
|
|
250 |
|
|
|
251 |
|
|
|
252 |
## Bootstrap and repeated holdout folds |
|
|
253 |
# Default: bootstrapFolds=100 |
|
|
254 |
|
|
|
255 |
bootstrapFolds=100 |
|
|
256 |
|
|
|
257 |
# Run without feature selection |
|
|
258 |
# If true, maxNumberOfSelectedFeatures and maxNumberOfFeaturesInModel |
|
|
259 |
# will be set to maximum (which is the number of features in the dataset). |
|
|
260 |
# Also, if true, available search mode won't be executed |
|
|
261 |
# Default: noFeatureSelection=false |
|
|
262 |
noFeatureSelection=false |
|
|
263 |
|
|
|
264 |
|
|
|
265 |
## Correlated features |
|
|
266 |
# Thresholds for Spearman and Pearson correlations |
|
|
267 |
# Correlated feature search can be disabled by setting retrieveCorrelatedGenes to |
|
|
268 |
# false |
|
|
269 |
# Default: retrieveCorrelatedGenes=true |
|
|
270 |
# Default: spearmanCorrelation_lower = -0.99 |
|
|
271 |
# spearmanCorrelation_upper = 0.99 |
|
|
272 |
# pearsonCorrelation_lower = -0.99 |
|
|
273 |
# pearsonCorrelation_upper = 0.99 |
|
|
274 |
|
|
|
275 |
retrieveCorrelatedGenes=true |
|
|
276 |
spearmanCorrelation_lower = -0.99 |
|
|
277 |
spearmanCorrelation_upper = 0.99 |
|
|
278 |
pearsonCorrelation_lower = -0.99 |
|
|
279 |
pearsonCorrelation_upper = 0.99 |
|
|
280 |
|
|
|
281 |
|
|
|
282 |
# Retrieve features based on equivalent infogain or relieff ranking score |
|
|
283 |
# Default: maxRankingScoreDifference = 0.005 |
|
|
284 |
# retreiveCorrelatedGenesByRankingScore=false |
|
|
285 |
|
|
|
286 |
maxRankingScoreDifference = 0.005 |
|
|
287 |
retreiveCorrelatedGenesByRankingScore=false |
|
|
288 |
|
|
|
289 |
# Create model with correlated genes |
|
|
290 |
# Default: generateModelWithCorrelatedGenes = false |
|
|
291 |
|
|
|
292 |
|
|
|
293 |
## RUN mode |
|
|
294 |
# BioDiscML will test all available classifier algorithms. If you wish to choose |
|
|
295 |
# specific classifiers, you'll need to use the fast way mode and provide a |
|
|
296 |
# list of classifiers configurations (classifier name and hyperparameters). |
|
|
297 |
# Please use Weka GUI to help you choose the configurations |
|
|
298 |
# For each configuration, you'll need to provide what optimizer to use. |
|
|
299 |
|
|
|
300 |
# Fast mode classification |
|
|
301 |
# Usage: cfcmd=classifier with options,optimizer. |
|
|
302 |
# Available optimizers: AUC,ACC,SEN,SPE,MCC,TP+FN,kappa and ALLOPT (all optimizers) |
|
|
303 |
# Available search modes: F,FB,B,BF,top1,top5,top10,top15,top20,top30,top40,top50,top75,top100,top200,all and ALLSEARCH (all search modes) |
|
|
304 |
# If no optimizer or search modes are provided, they will all be tested (equivalent to provide ALLOPT and ALLSEARCH) |
|
|
305 |
# Default: classificationFastWay=false |
|
|
306 |
# ccmd=*empty* |
|
|
307 |
|
|
|
308 |
classificationFastWay=false |
|
|
309 |
ccmd=bayes.NaiveBayes -K, SEN |
|
|
310 |
ccmd=bayes.NaiveBayes -K, AUC |
|
|
311 |
ccmd=misc.VFI -B 0.4, SEN |
|
|
312 |
ccmd=misc.VFI -B 0.4, AUC |
|
|
313 |
ccmd=misc.VFI -B 0.4, AUC, F |
|
|
314 |
ccmd=misc.VFI -B 0.6 |
|
|
315 |
ccmd=misc.VFI -B 0.6, ALLOPT, FB |
|
|
316 |
ccmd=trees.J48 |
|
|
317 |
|
|
|
318 |
# Fast mode regression |
|
|
319 |
# Usage: rfcmd=classifier with options,optimizer. |
|
|
320 |
# Available optimizers: CC, MAE, RMSE, RAE, RRSE. |
|
|
321 |
# Default: regressionFastWay=false |
|
|
322 |
# rcmd=*empty* |
|
|
323 |
|
|
|
324 |
regressionFastWay=false |
|
|
325 |
rcmd=functions.GaussianProcesses -L 1.0 -N 1 -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0", CC |
|
|
326 |
rcmd=functions.GaussianProcesses -L 1.0 -N 1 -K "weka.classifiers.functions.supportVector.PolyKernel -C 250007 -E 1.0", RMSE |
|
|
327 |
|
|
|
328 |
|
|
|
329 |
# #### End of configuration file #### # |