[36b44b]: / torchdrug / tasks / reasoning.py

Download this file

253 lines (218 with data), 12.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils import data as torch_data
from torchdrug import core, tasks
from torchdrug.layers import functional
from torchdrug.core import Registry as R
@R.register("tasks.KnowledgeGraphCompletion")
class KnowledgeGraphCompletion(tasks.Task, core.Configurable):
"""
Knowledge graph completion task.
This class provides routines for the family of knowledge graph embedding models.
Parameters:
model (nn.Module): knowledge graph completion model
criterion (str, list or dict, optional): training criterion(s). For dict, the keys are criterions and the values
are the corresponding weights. Available criterions are ``bce``, ``ce`` and ``ranking``.
metric (str or list of str, optional): metric(s). Available metrics are ``mr``, ``mrr`` and ``hits@K``.
num_negative (int, optional): number of negative samples per positive sample
margin (float, optional): margin in ranking criterion
adversarial_temperature (float, optional): temperature for self-adversarial negative sampling.
Set ``0`` to disable self-adversarial negative sampling.
strict_negative (bool, optional): use strict negative sampling or not
fact_ratio (float, optional): split the training set into facts and labels.
Set ``None`` to use the whole training set as both facts and labels.
sample_weight (bool, optional): whether to down-weight triplets from entities of large degrees
filtered_ranking (bool, optional): use filtered or unfiltered ranking for evaluation
full_batch_eval (bool, optional): whether to feed test negative samples by full batch or mini batch.
Full batch speeds up evaluation significantly, but may cause OOM problems for some models and datasets.
"""
_option_members = {"criterion", "metric"}
def __init__(self, model, criterion="bce", metric=("mr", "mrr", "hits@1", "hits@3", "hits@10"),
num_negative=128, margin=6, adversarial_temperature=0, strict_negative=True, fact_ratio=None,
sample_weight=True, filtered_ranking=True, full_batch_eval=False):
super(KnowledgeGraphCompletion, self).__init__()
self.model = model
self.criterion = criterion
self.metric = metric
self.num_negative = num_negative
self.margin = margin
self.adversarial_temperature = adversarial_temperature
self.strict_negative = strict_negative
self.fact_ratio = fact_ratio
self.sample_weight = sample_weight
self.filtered_ranking = filtered_ranking
self.full_batch_eval = full_batch_eval
def preprocess(self, train_set, valid_set, test_set):
if isinstance(train_set, torch_data.Subset):
dataset = train_set.dataset
else:
dataset = train_set
self.num_entity = dataset.num_entity
self.num_relation = dataset.num_relation
self.register_buffer("graph", dataset.graph)
fact_mask = torch.ones(len(dataset), dtype=torch.bool)
fact_mask[valid_set.indices] = 0
fact_mask[test_set.indices] = 0
if self.fact_ratio:
length = int(len(train_set) * self.fact_ratio)
index = torch.randperm(len(train_set))[length:]
train_indices = torch.tensor(train_set.indices)
fact_mask[train_indices[index]] = 0
train_set = torch_data.Subset(train_set, index)
self.register_buffer("fact_graph", dataset.graph.edge_mask(fact_mask))
if self.sample_weight:
degree_hr = torch.zeros(self.num_entity, self.num_relation, dtype=torch.long)
degree_tr = torch.zeros(self.num_entity, self.num_relation, dtype=torch.long)
for h, t, r in train_set:
degree_hr[h, r] += 1
degree_tr[t, r] += 1
self.register_buffer("degree_hr", degree_hr)
self.register_buffer("degree_tr", degree_tr)
return train_set, valid_set, test_set
def forward(self, batch, all_loss=None, metric=None):
""""""
all_loss = torch.tensor(0, dtype=torch.float32, device=self.device)
metric = {}
pred = self.predict(batch, all_loss, metric)
pos_h_index, pos_t_index, pos_r_index = batch.t()
for criterion, weight in self.criterion.items():
if criterion == "bce":
target = torch.zeros_like(pred)
target[:, 0] = 1
loss = F.binary_cross_entropy_with_logits(pred, target, reduction="none")
neg_weight = torch.ones_like(pred)
if self.adversarial_temperature > 0:
with torch.no_grad():
neg_weight[:, 1:] = F.softmax(pred[:, 1:] / self.adversarial_temperature, dim=-1)
else:
neg_weight[:, 1:] = 1 / self.num_negative
loss = (loss * neg_weight).sum(dim=-1) / neg_weight.sum(dim=-1)
elif criterion == "ce":
target = torch.zeros(len(pred), dtype=torch.long, device=self.device)
loss = F.cross_entropy(pred, target, reduction="none")
elif criterion == "ranking":
positive = pred[:, :1]
negative = pred[:, 1:]
target = torch.ones_like(negative)
loss = F.margin_ranking_loss(positive, negative, target, margin=self.margin)
else:
raise ValueError("Unknown criterion `%s`" % criterion)
if self.sample_weight:
sample_weight = self.degree_hr[pos_h_index, pos_r_index] * self.degree_tr[pos_t_index, pos_r_index]
sample_weight = 1 / sample_weight.float().sqrt()
loss = (loss * sample_weight).sum() / sample_weight.sum()
else:
loss = loss.mean()
name = tasks._get_criterion_name(criterion)
metric[name] = loss
all_loss += loss * weight
return all_loss, metric
def predict(self, batch, all_loss=None, metric=None):
pos_h_index, pos_t_index, pos_r_index = batch.t()
batch_size = len(batch)
if all_loss is None:
# test
all_index = torch.arange(self.num_entity, device=self.device)
t_preds = []
h_preds = []
num_negative = self.num_entity if self.full_batch_eval else self.num_negative
for neg_index in all_index.split(num_negative):
r_index = pos_r_index.unsqueeze(-1).expand(-1, len(neg_index))
h_index, t_index = torch.meshgrid(pos_h_index, neg_index)
t_pred = self.model(self.fact_graph, h_index, t_index, r_index, all_loss=all_loss, metric=metric)
t_preds.append(t_pred)
t_pred = torch.cat(t_preds, dim=-1)
for neg_index in all_index.split(num_negative):
r_index = pos_r_index.unsqueeze(-1).expand(-1, len(neg_index))
t_index, h_index = torch.meshgrid(pos_t_index, neg_index)
h_pred = self.model(self.fact_graph, h_index, t_index, r_index, all_loss=all_loss, metric=metric)
h_preds.append(h_pred)
h_pred = torch.cat(h_preds, dim=-1)
pred = torch.stack([t_pred, h_pred], dim=1)
# in case of GPU OOM
pred = pred.cpu()
else:
# train
if self.strict_negative:
neg_index = self._strict_negative(pos_h_index, pos_t_index, pos_r_index)
else:
neg_index = torch.randint(self.num_entity, (batch_size, self.num_negative), device=self.device)
h_index = pos_h_index.unsqueeze(-1).repeat(1, self.num_negative + 1)
t_index = pos_t_index.unsqueeze(-1).repeat(1, self.num_negative + 1)
r_index = pos_r_index.unsqueeze(-1).repeat(1, self.num_negative + 1)
t_index[:batch_size // 2, 1:] = neg_index[:batch_size // 2]
h_index[batch_size // 2:, 1:] = neg_index[batch_size // 2:]
pred = self.model(self.fact_graph, h_index, t_index, r_index, all_loss=all_loss, metric=metric)
return pred
def target(self, batch):
# test target
batch_size = len(batch)
pos_h_index, pos_t_index, pos_r_index = batch.t()
any = -torch.ones_like(pos_h_index)
pattern = torch.stack([pos_h_index, any, pos_r_index], dim=-1)
edge_index, num_t_truth = self.graph.match(pattern)
t_truth_index = self.graph.edge_list[edge_index, 1]
pos_index = torch.repeat_interleave(num_t_truth)
t_mask = torch.ones(batch_size, self.num_entity, dtype=torch.bool, device=self.device)
t_mask[pos_index, t_truth_index] = 0
pattern = torch.stack([any, pos_t_index, pos_r_index], dim=-1)
edge_index, num_h_truth = self.graph.match(pattern)
h_truth_index = self.graph.edge_list[edge_index, 0]
pos_index = torch.repeat_interleave(num_h_truth)
h_mask = torch.ones(batch_size, self.num_entity, dtype=torch.bool, device=self.device)
h_mask[pos_index, h_truth_index] = 0
mask = torch.stack([t_mask, h_mask], dim=1)
target = torch.stack([pos_t_index, pos_h_index], dim=1)
# in case of GPU OOM
return mask.cpu(), target.cpu()
def evaluate(self, pred, target):
mask, target = target
pos_pred = pred.gather(-1, target.unsqueeze(-1))
if self.filtered_ranking:
ranking = torch.sum((pos_pred <= pred) & mask, dim=-1) + 1
else:
ranking = torch.sum(pos_pred <= pred, dim=-1) + 1
metric = {}
for _metric in self.metric:
if _metric == "mr":
score = ranking.float().mean()
elif _metric == "mrr":
score = (1 / ranking.float()).mean()
elif _metric.startswith("hits@"):
threshold = int(_metric[5:])
score = (ranking <= threshold).float().mean()
else:
raise ValueError("Unknown metric `%s`" % _metric)
name = tasks._get_metric_name(_metric)
metric[name] = score
return metric
def visualize(self, batch):
h_index, t_index, r_index = batch.t()
return self.model.visualize(self.fact_graph, h_index, t_index, r_index)
@torch.no_grad()
def _strict_negative(self, pos_h_index, pos_t_index, pos_r_index):
batch_size = len(pos_h_index)
any = -torch.ones_like(pos_h_index)
pattern = torch.stack([pos_h_index, any, pos_r_index], dim=-1)
pattern = pattern[:batch_size // 2]
edge_index, num_t_truth = self.fact_graph.match(pattern)
t_truth_index = self.fact_graph.edge_list[edge_index, 1]
pos_index = torch.repeat_interleave(num_t_truth)
t_mask = torch.ones(len(pattern), self.num_entity, dtype=torch.bool, device=self.device)
t_mask[pos_index, t_truth_index] = 0
neg_t_candidate = t_mask.nonzero()[:, 1]
num_t_candidate = t_mask.sum(dim=-1)
neg_t_index = functional.variadic_sample(neg_t_candidate, num_t_candidate, self.num_negative)
pattern = torch.stack([any, pos_t_index, pos_r_index], dim=-1)
pattern = pattern[batch_size // 2:]
edge_index, num_h_truth = self.fact_graph.match(pattern)
h_truth_index = self.fact_graph.edge_list[edge_index, 0]
pos_index = torch.repeat_interleave(num_h_truth)
h_mask = torch.ones(len(pattern), self.num_entity, dtype=torch.bool, device=self.device)
h_mask[pos_index, h_truth_index] = 0
neg_h_candidate = h_mask.nonzero()[:, 1]
num_h_candidate = h_mask.sum(dim=-1)
neg_h_index = functional.variadic_sample(neg_h_candidate, num_h_candidate, self.num_negative)
neg_index = torch.cat([neg_t_index, neg_h_index])
return neg_index