[36b44b]: / torchdrug / datasets / uspto50k.py

Download this file

264 lines (227 with data), 11.5 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import os
import copy
from collections import defaultdict
import numpy as np
import networkx as nx
from tqdm import tqdm
from rdkit import Chem
import torch
from torch.utils import data as torch_data
from torch_scatter import scatter_max
from torchdrug import data, utils
from torchdrug.core import Registry as R
@R.register("datasets.USPTO50k")
@utils.copy_args(data.ReactionDataset.load_csv, ignore=("smiles_field", "target_fields"))
class USPTO50k(data.ReactionDataset):
"""
Chemical reactions extracted from USPTO patents.
Statistics:
- #Reaction: 50,017
- #Reaction class: 10
Parameters:
path (str): path to store the dataset
as_synthon (bool, optional): whether decompose (reactant, product) pairs into (reactant, synthon) pairs
verbose (int, optional): output verbose level
**kwargs
"""
target_fields = ["class"]
target_alias = {"class": "reaction"}
reaction_names = ["Heteroatom alkylation and arylation",
"Acylation and related processes",
"C-C bond formation",
"Heterocycle formation",
"Protections",
"Deprotections",
"Reductions",
"Oxidations",
"Functional group interconversion (FGI)",
"Functional group addition (FGA)"]
url = "https://raw.githubusercontent.com/connorcoley/retrosim/master/retrosim/data/data_processed.csv"
md5 = "404c361dd1568fbdb4d16ca588953749"
def __init__(self, path, as_synthon=False, verbose=1, **kwargs):
path = os.path.expanduser(path)
if not os.path.exists(path):
os.makedirs(path)
self.path = path
self.as_synthon = as_synthon
file_name = utils.download(self.url, path, md5=self.md5)
self.load_csv(file_name, smiles_field="rxn_smiles", target_fields=self.target_fields, verbose=verbose,
**kwargs)
if as_synthon:
prefix = "Computing synthons"
process_fn = self._get_synthon
else:
prefix = "Computing reaction centers"
process_fn = self._get_reaction_center
data = self.data
targets = self.targets
self.data = []
self.targets = defaultdict(list)
indexes = range(len(data))
if verbose:
indexes = tqdm(indexes, prefix)
invalid = 0
for i in indexes:
reactant, product = data[i]
reactant.bond_stereo[:] = 0
product.bond_stereo[:] = 0
reactants, products = process_fn(reactant, product)
if not reactants:
invalid += 1
continue
self.data += zip(reactants, products)
for k in targets:
new_k = self.target_alias.get(k, k)
self.targets[new_k] += [targets[k][i] - 1] * len(reactants)
self.targets["sample id"] += [i] * len(reactants)
self.valid_rate = 1 - invalid / len(data)
def _get_difference(self, reactant, product):
product2id = product.atom_map
id2reactant = torch.zeros(product2id.max() + 1, dtype=torch.long)
id2reactant[reactant.atom_map] = torch.arange(reactant.num_node)
prod2react = id2reactant[product2id]
# check edges in the product
product = product.directed()
# O(n^2) brute-force match is faster than O(nlogn) data.Graph.match for small molecules
mapped_edge = product.edge_list.clone()
mapped_edge[:, :2] = prod2react[mapped_edge[:, :2]]
is_same_index = mapped_edge.unsqueeze(0) == reactant.edge_list.unsqueeze(1)
has_typed_edge = is_same_index.all(dim=-1).any(dim=0)
has_edge = is_same_index[:, :, :2].all(dim=-1).any(dim=0)
is_added = ~has_edge
is_modified = has_edge & ~has_typed_edge
edge_added = product.edge_list[is_added, :2]
edge_modified = product.edge_list[is_modified, :2]
return edge_added, edge_modified, prod2react
def _get_reaction_center(self, reactant, product):
edge_added, edge_modified, prod2react = self._get_difference(reactant, product)
edge_label = torch.zeros(product.num_edge, dtype=torch.long)
node_label = torch.zeros(product.num_node, dtype=torch.long)
if len(edge_added) > 0:
if len(edge_added) == 1: # add a single edge
any = -torch.ones(1, 1, dtype=torch.long)
pattern = torch.cat([edge_added, any], dim=-1)
index, num_match = product.match(pattern)
assert num_match.item() == 1
edge_label[index] = 1
h, t = edge_added[0]
reaction_center = torch.tensor([product.atom_map[h], product.atom_map[t]])
else:
if len(edge_modified) == 1: # modify a single edge
h, t = edge_modified[0]
if product.degree_in[h] == 1:
node_label[h] = 1
reaction_center = torch.tensor([product.atom_map[h], 0])
elif product.degree_in[t] == 1:
node_label[t] = 1
reaction_center = torch.tensor([product.atom_map[t], 0])
else:
# pretend the reaction center is h
node_label[h] = 1
reaction_center = torch.tensor([product.atom_map[h], 0])
else:
product_hs = torch.tensor([atom.GetTotalNumHs() for atom in product.to_molecule().GetAtoms()])
reactant_hs = torch.tensor([atom.GetTotalNumHs() for atom in reactant.to_molecule().GetAtoms()])
atom_modified = (product_hs != reactant_hs[prod2react]).nonzero().flatten()
if len(atom_modified) == 1: # modify single node
node_label[atom_modified] = 1
reaction_center = torch.tensor([product.atom_map[atom_modified[0]], 0])
if edge_label.sum() + node_label.sum() == 0:
return [], []
with product.edge():
product.edge_label = edge_label
with product.node():
product.node_label = node_label
with reactant.graph():
reactant.reaction_center = reaction_center
with product.graph():
product.reaction_center = reaction_center
return [reactant], [product]
def _get_synthon(self, reactant, product):
edge_added, edge_modified, prod2react = self._get_difference(reactant, product)
reactants = []
synthons = []
if len(edge_added) > 0:
if len(edge_added) == 1: # add a single edge
reverse_edge = edge_added.flip(1)
any = -torch.ones(2, 1, dtype=torch.long)
pattern = torch.cat([edge_added, reverse_edge])
pattern = torch.cat([pattern, any], dim=-1)
index, num_match = product.match(pattern)
edge_mask = torch.ones(product.num_edge, dtype=torch.bool)
edge_mask[index] = 0
product = product.edge_mask(edge_mask)
_reactants = reactant.connected_components()[0]
_synthons = product.connected_components()[0]
assert len(_synthons) >= len(_reactants) # because a few samples contain multiple products
h, t = edge_added[0]
reaction_center = torch.tensor([product.atom_map[h], product.atom_map[t]])
with _reactants.graph():
_reactants.reaction_center = reaction_center.expand(len(_reactants), -1)
with _synthons.graph():
_synthons.reaction_center = reaction_center.expand(len(_synthons), -1)
# reactant / sython can be uniquely indexed by their maximal atom mapping ID
reactant_id = scatter_max(_reactants.atom_map, _reactants.node2graph, dim_size=len(_reactants))[0]
synthon_id = scatter_max(_synthons.atom_map, _synthons.node2graph, dim_size=len(_synthons))[0]
react2synthon = (reactant_id.unsqueeze(-1) == synthon_id.unsqueeze(0)).long().argmax(-1)
react2synthon = react2synthon.tolist()
for r, s in enumerate(react2synthon):
reactants.append(_reactants[r])
synthons.append(_synthons[s])
else:
num_cc = reactant.connected_components()[1]
assert num_cc == 1
if len(edge_modified) == 1: # modify a single edge
synthon = product
h, t = edge_modified[0]
if product.degree_in[h] == 1:
reaction_center = torch.tensor([product.atom_map[h], 0])
elif product.degree_in[t] == 1:
reaction_center = torch.tensor([product.atom_map[t], 0])
else:
# pretend the reaction center is h
reaction_center = torch.tensor([product.atom_map[h], 0])
with reactant.graph():
reactant.reaction_center = reaction_center
with synthon.graph():
synthon.reaction_center = reaction_center
reactants.append(reactant)
synthons.append(synthon)
else:
product_hs = torch.tensor([atom.GetTotalNumHs() for atom in product.to_molecule().GetAtoms()])
reactant_hs = torch.tensor([atom.GetTotalNumHs() for atom in reactant.to_molecule().GetAtoms()])
atom_modified = (product_hs != reactant_hs[prod2react]).nonzero().flatten()
if len(atom_modified) == 1: # modify single node
synthon = product
reaction_center = torch.tensor([product.atom_map[atom_modified[0]], 0])
with reactant.graph():
reactant.reaction_center = reaction_center
with synthon.graph():
synthon.reaction_center = reaction_center
reactants.append(reactant)
synthons.append(synthon)
return reactants, synthons
def split(self, ratios=(0.8, 0.1, 0.1)):
react2index = defaultdict(list)
react2sample = defaultdict(list)
for i in range(len(self)):
reaction = self.targets["reaction"][i]
sample_id = self.targets["sample id"][i]
react2index[reaction].append(i)
react2sample[reaction].append(sample_id)
indexes = [[] for _ in ratios]
for reaction in react2index:
num_sample = len(set(react2sample[reaction]))
key_lengths = [int(round(num_sample * ratio)) for ratio in ratios]
key_lengths[-1] = num_sample - sum(key_lengths[:-1])
react_indexes = data.key_split(react2index[reaction], react2sample[reaction], key_lengths=key_lengths)
for index, react_index in zip(indexes, react_indexes):
index += [i for i in react_index]
return [torch_data.Subset(self, index) for index in indexes]
@property
def num_reaction_type(self):
return len(self.reaction_types)
@utils.cached_property
def reaction_types(self):
"""All reaction types."""
return sorted(set(self.target["class"]))