a b/doc/source/bibliography.rst
1
.. Dataset
2
.. _QM8: https://arxiv.org/pdf/1703.00564.pdf
3
.. _QM9: https://arxiv.org/pdf/1703.00564.pdf
4
.. _BBBP: https://arxiv.org/pdf/1703.00564.pdf
5
.. _Tox21: https://arxiv.org/pdf/1703.00564.pdf
6
.. _ToxCast: https://arxiv.org/pdf/1703.00564.pdf
7
.. _SIDER: https://arxiv.org/pdf/1703.00564.pdf
8
.. _ClinTox: https://arxiv.org/pdf/1703.00564.pdf
9
.. _MUV: https://arxiv.org/pdf/1703.00564.pdf
10
.. _HIV: https://arxiv.org/pdf/1703.00564.pdf
11
.. _BACE: https://arxiv.org/pdf/1703.00564.pdf
12
.. _ChEMBL: https://pubmed.ncbi.nlm.nih.gov/30155234/
13
.. _ZINC250k: https://pubs.acs.org/doi/pdfplus/10.1021/ci3001277
14
.. _ZINC2M: https://pubs.acs.org/doi/10.1021/acs.jcim.5b00559
15
.. _ZINC15: https://pubs.acs.org/doi/10.1021/acs.jcim.5b00559
16
.. _USPTO50k: https://aspace.repository.cam.ac.uk/bitstream/handle/1810/244727/lowethesis.pdf
17
.. _FB15k: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
18
.. _FB15k-237: https://www.aclweb.org/anthology/W15-4007
19
.. _WN18: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
20
.. _WN18RR: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17366/15884
21
22
.. Graph Neural Networks
23
.. _NFP: https://papers.nips.cc/paper/5954-convolutional-networks-on-graphs-for-learning-molecular-fingerprints.pdf
24
.. _GCN: https://arxiv.org/pdf/1609.02907.pdf
25
.. _GAT: https://arxiv.org/pdf/1710.10903.pdf
26
.. _ENN-S2S: https://arxiv.org/pdf/1704.01212.pdf
27
.. _SchNet: https://aip.scitation.org/doi/pdf/10.1063/1.5019779
28
.. _GIN: https://arxiv.org/pdf/1810.00826.pdf
29
.. _RGCN: https://arxiv.org/abs/1703.06103.pdf
30
.. _ChebNet: https://arxiv.org/pdf/1606.09375.pdf
31
32
.. Differentiable Graph Pooling
33
.. _DiffPool: https://papers.nips.cc/paper/2018/file/e77dbaf6759253c7c6d0efc5690369c7-Paper.pdf
34
.. _MinCutPool: http://proceedings.mlr.press/v119/bianchi20a/bianchi20a.pdf
35
.. Readout Layers
36
.. _Set2Set: https://arxiv.org/pdf/1511.06391.pdf
37
38
.. Normalization Layers
39
.. _PairNorm: https://openreview.net/pdf?id=rkecl1rtwB
40
41
.. Readout Layers
42
.. _Set2Set: https://arxiv.org/pdf/1511.06391.pdf
43
44
.. Normalization Layers
45
.. _PairNorm: https://openreview.net/pdf?id=rkecl1rtwB
46
47
.. Pretrained molecular representations
48
.. _EdgePred: https://arxiv.org/pdf/1706.02216.pdf
49
.. _InfoGraph: https://arxiv.org/pdf/1908.01000.pdf
50
.. _AttrMasking: https://arxiv.org/pdf/1905.12265.pdf
51
.. _ContextPred: https://arxiv.org/pdf/1905.12265.pdf
52
53
.. De Novo Molecule Design
54
.. _GCPN: https://papers.nips.cc/paper/7877-graph-convolutional-policy-network-for-goal-directed-molecular-graph-generation.pdf
55
.. _GraphAF: https://arxiv.org/pdf/2001.09382.pdf
56
57
.. Retrosynthesis
58
.. _G2Gs: https://arxiv.org/pdf/2003.12725.pdf
59
60
.. Protein Representation Learning
61
.. _TAPE: https://proceedings.neurips.cc/paper/2019/file/37f65c068b7723cd7809ee2d31d7861c-Paper.pdf
62
.. _ProteinCNN: https://arxiv.org/pdf/2011.03443.pdf
63
.. _ESM: https://www.biorxiv.org/content/10.1101/622803v1.full.pdf
64
.. _GearNet: https://arxiv.org/pdf/2203.06125.pdf
65
66
.. Knowledge Graph Reasoning
67
.. _TransE: http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf
68
.. _DistMult: https://arxiv.org/pdf/1412.6575.pdf
69
.. _ComplEx: http://proceedings.mlr.press/v48/trouillon16.pdf
70
.. _SimplE: https://papers.nips.cc/paper/7682-simple-embedding-for-link-prediction-in-knowledge-graphs.pdf
71
.. _RotatE: https://arxiv.org/pdf/1902.10197.pdf
72
.. _KBGAT: https://www.aclweb.org/anthology/P19-1466.pdf
73
.. _NeuralLP: https://papers.nips.cc/paper/2017/file/0e55666a4ad822e0e34299df3591d979-Paper.pdf