Switch to unified view

a b/tests/test_specific_cases.py
1
import pytest
2
3
import selfies as sf
4
5
6
def decode_eq(selfies, smiles):
7
    s = sf.decoder(selfies)
8
    return s == smiles
9
10
11
def roundtrip_eq(smiles_in, smiles_out):
12
    sel = sf.encoder(smiles_in)
13
    smi = sf.decoder(sel)
14
    return smi == smiles_out
15
16
17
def test_branch_and_ring_at_state_X0():
18
    """Tests SELFIES with branches and rings at state X0 (i.e. at the
19
    very beginning of a SELFIES). These symbols should be skipped.
20
    """
21
22
    assert decode_eq("[Branch3][C][S][C][O]", "CSCO")
23
    assert decode_eq("[Ring3][C][S][C][O]", "CSCO")
24
    assert decode_eq("[Branch1][Ring1][Ring3][C][S][C][O]", "CSCO")
25
26
27
def test_branch_at_state_X1():
28
    """Test SELFIES with branches at state X1 (i.e. at an atom that
29
    can only make one bond. In this case, the branch symbol should be skipped.
30
    """
31
32
    assert decode_eq("[C][C][O][Branch1][C][I]", "CCOCI")
33
    assert decode_eq("[C][C][C][O][#Branch3][C][I]", "CCCOCI")
34
35
36
def test_branch_and_ring_decrement_state():
37
    """Tests that the branch and ring symbols properly decrement the
38
    derivation state.
39
    """
40
41
    assert decode_eq("[C][C][C][Ring1][Ring1][#C]", "C1CC1=C")
42
    assert decode_eq("[C][=C][C][C][#Ring1][Ring1][#C]", "C=C1CC1")
43
    assert decode_eq("[C][O][C][C][=Ring1][Ring1][#C]", "COCCC")
44
45
    assert decode_eq("[C][=C][Branch1][C][=C][#C]", "C=C(C)C")
46
47
48
def test_branch_at_end_of_selfies():
49
    """Test SELFIES that have a branch symbol as its very last symbol.
50
    """
51
52
    assert decode_eq("[C][C][C][C][Branch1]", "CCCC")
53
    assert decode_eq("[C][C][C][C][#Branch3]", "CCCC")
54
55
56
def test_ring_at_end_of_selfies():
57
    """Test SELFIES that have a ring symbol as its very last symbol.
58
    """
59
60
    assert decode_eq("[C][C][C][C][C][Ring1]", "CCCC=C")
61
    assert decode_eq("[C][C][C][C][C][Ring3]", "CCCC=C")
62
63
64
def test_branch_with_no_atoms():
65
    """Test SELFIES that have a branch, but the branch has no atoms in it.
66
    Such branches should not be made in the outputted SMILES.
67
    """
68
69
    s = "[C][Branch1][Ring2][Branch1][Branch1][Branch1][F]"
70
    assert decode_eq(s, "CF")
71
72
    s = "[C][Branch1][Ring2][Ring1][Ring1][Branch1][F]"
73
    assert decode_eq(s, "CF")
74
75
    s = "[C][=Branch1][Ring2][Branch1][C][Cl][F]"
76
    assert decode_eq(s, "C(Cl)F")
77
78
    # special case: #Branch3 takes Q_1, Q_2 = [O] and Q_3 = ''. However,
79
    # there are no more symbols in the branch.
80
    assert decode_eq("[C][C][C][C][#Branch3][O][O]", "CCCC")
81
82
83
def test_oversized_branch():
84
    """Test SELFIES that have a branch, with Q larger than the length
85
    of the SELFIES
86
    """
87
88
    assert decode_eq("[C][Branch2][O][O][C][C][S][F][C]", "CCCSF")
89
    assert decode_eq("[C][#Branch2][O][O][#C][C][S][F]", "C#CCSF")
90
91
92
def test_oversized_ring():
93
    """Test SELFIES that have a ring, with Q so large that the (Q + 1)-th
94
    previously derived atom does not exist.
95
    """
96
97
    assert decode_eq("[C][C][C][C][Ring1][O]", "C1CCC1")
98
    assert decode_eq("[C][C][C][C][Ring2][O][C]", "C1CCC1")
99
100
    # special case: Ring2 takes Q_1 = [O] and Q_2 = '', leading to
101
    # Q = 9 * 16 + 0 (i.e. an oversized ring)
102
    assert decode_eq("[C][C][C][C][Ring2][O]", "C1CCC1")
103
104
    # special case: ring between 1st atom and 1st atom should not be formed
105
    assert decode_eq("[C][Ring1][O]", "C")
106
107
108
def test_branch_at_beginning_of_branch():
109
    """Test SELFIES that have a branch immediately at the start of a branch.
110
    """
111
112
    # [C@]((Br)Cl)F
113
    s = "[C@][=Branch1][Branch1][Branch1][C][Br][Cl][F]"
114
    assert decode_eq(s, "[C@](Br)(Cl)F")
115
116
    # [C@](((Br)Cl)I)F
117
    s = "[C@][#Branch1][Branch2][=Branch1][Branch1][Branch1][C][Br][Cl][I][F]"
118
    assert decode_eq(s, "[C@](Br)(Cl)(I)F")
119
120
    # [C@]((Br)(Cl)I)F
121
    s = "[C@][#Branch1][Branch2][Branch1][C][Br][Branch1][C][Cl][I][F]"
122
    assert decode_eq(s, "[C@](Br)(Cl)(I)F")
123
124
125
def test_ring_at_beginning_of_branch():
126
    """Test SELFIES that have a ring immediately at the start of a branch.
127
    """
128
129
    # CC1CCC(1CCl)F
130
    s = "[C][C][C][C][C][=Branch1][Branch1][Ring1][Ring2][C][Cl][F]"
131
    assert decode_eq(s, "CC1CCC1(CCl)F")
132
133
    # CC1CCS(Br)(1CCl)F
134
    s = "[C][C][C][C][S][Branch1][C][Br]" \
135
        "[=Branch1][Branch1][Ring1][Ring2][C][Cl][F]"
136
    assert decode_eq(s, "CC1CCS1(Br)(CCl)F")
137
138
139
def test_branch_and_ring_at_beginning_of_branch():
140
    """Test SELFIES that have a branch and ring immediately at the start
141
    of a branch.
142
    """
143
144
    # CC1CCCS((Br)1Cl)F
145
    s = "[C][C][C][C][C][S][#Branch1][#Branch1][Branch1][C][Br]" \
146
        "[Ring1][Branch1][Cl][F]"
147
    assert decode_eq(s, "CC1CCCS1(Br)(Cl)F")
148
149
    # CC1CCCS(1(Br)Cl)F
150
    s = "[C][C][C][C][C][S][#Branch1][#Branch1][Ring1][Branch1]" \
151
        "[Branch1][C][Br][Cl][F]"
152
    assert decode_eq(s, "CC1CCCS1(Br)(Cl)F")
153
154
155
def test_ring_immediately_following_branch():
156
    """Test SELFIES that have a ring immediately following after a branch.
157
    """
158
159
    # CCC1CCCC(OCO)1
160
    s = "[C][C][C][C][C][C][C][Branch1][Ring2][O][C][O][Ring1][Branch1]"
161
    assert decode_eq(s, "CCC1CCCC1OCO")
162
163
    # CCC1CCCC(OCO)(F)1
164
    s = "[C][C][C][C][C][C][C][Branch1][Ring2][O][C][O]" \
165
        "[Branch1][C][F][Ring1][Branch1]"
166
    assert decode_eq(s, "CCC1CCCC1(OCO)F")
167
168
169
def test_ring_after_branch():
170
    """Tests SELFIES that have a ring following a branch, but not
171
    immediately after a branch.
172
    """
173
174
    # CCCCCCC1(OCO)1
175
    s = "[C][C][C][C][C][C][C][Branch1][Ring2][O][C][O][C][Ring1][Branch1]"
176
    assert decode_eq(s, "CCCCCCC(OCO)=C")
177
178
    s = "[C][C][C][C][C][C][C][Branch1][Ring2][O][C][O]" \
179
        "[Branch1][C][F][C][C][Ring1][=Branch2]"
180
    assert decode_eq(s, "CCCCC1CC(OCO)(F)CC1")
181
182
183
def test_ring_on_top_of_existing_bond():
184
    """Tests SELFIES with rings between two atoms that are already bonded
185
    in the main scaffold.
186
    """
187
188
    # C1C1, C1C=1, C1C#1, ...
189
    assert decode_eq("[C][C][Ring1][C]", "C=C")
190
    assert decode_eq("[C][/C][Ring1][C]", "C=C")
191
    assert decode_eq("[C][C][=Ring1][C]", "C#C")
192
    assert decode_eq("[C][C][#Ring1][C]", "C#C")
193
194
195
def test_consecutive_rings():
196
    """Test SELFIES which have multiple consecutive rings.
197
    """
198
199
    s = "[C][C][C][C][Ring1][Ring2][Ring1][Ring2]"
200
    assert decode_eq(s, "C=1CCC=1")  # 1 + 1
201
202
    s = "[C][C][C][C][Ring1][Ring2][Ring1][Ring2][Ring1][Ring2]"
203
    assert decode_eq(s, "C#1CCC#1")  # 1 + 1 + 1
204
205
    s = "[C][C][C][C][=Ring1][Ring2][Ring1][Ring2]"
206
    assert decode_eq(s, "C#1CCC#1")  # 2 + 1
207
208
    s = "[C][C][C][C][Ring1][Ring2][=Ring1][Ring2]"
209
    assert decode_eq(s, "C#1CCC#1")  # 1 + 2
210
211
    # consecutive rings that exceed bond constraints
212
    s = "[C][C][C][C][#Ring1][Ring2][=Ring1][Ring2]"
213
    assert decode_eq(s, "C#1CCC#1")  # 3 + 2
214
215
    s = "[C][C][C][C][=Ring1][Ring2][#Ring1][Ring2]"
216
    assert decode_eq(s, "C#1CCC#1")  # 2 + 3
217
218
    s = "[C][C][C][C][=Ring1][Ring2][=Ring1][Ring2]"
219
    assert decode_eq(s, "C#1CCC#1")  # 2 + 2
220
221
    # consecutive rings with stereochemical single bond
222
    s = "[C][C][C][C][\\/Ring1][Ring2]"
223
    assert decode_eq(s, "C\\1CCC/1")
224
225
    s = "[C][C][C][C][\\/Ring1][Ring2][Ring1][Ring2]"
226
    assert decode_eq(s, "C=1CCC=1")
227
228
229
def test_unconstrained_symbols():
230
    """Tests SELFIES with symbols that are not semantically constrained.
231
    """
232
233
    f_branch = "[Branch1][C][F]"
234
    s = "[Xe-2]" + (f_branch * 8)
235
    assert decode_eq(s, "[Xe-2](F)(F)(F)(F)(F)(F)(F)CF")
236
237
    # change default semantic constraints
238
    constraints = sf.get_semantic_constraints()
239
    constraints["?"] = 2
240
    sf.set_semantic_constraints(constraints)
241
242
    assert decode_eq(s, "[Xe-2](F)CF")
243
244
    sf.set_semantic_constraints()
245
246
247
def test_isotope_symbols():
248
    """Tests that SELFIES symbols with isotope specifications are
249
     constrained properly.
250
    """
251
252
    s = "[13C][Branch1][C][Cl][Branch1][C][F][Branch1][C][Br][Branch1][C][I]"
253
    assert decode_eq(s, "[13C](Cl)(F)(Br)CI")
254
255
    assert decode_eq("[C][36Cl][C]", "C[36Cl]")
256
257
258
def test_chiral_symbols():
259
    """Tests that SELFIES symbols with chirality specifications are
260
    constrained properly.
261
    """
262
263
    s = "[C@@][Branch1][C][Cl][Branch1][C][F][Branch1][C][Br][Branch1][C][I]"
264
    assert decode_eq(s, "[C@@](Cl)(F)(Br)CI")
265
266
    s = "[C@H1][Branch1][C][Cl][Branch1][C][F][Branch1][C][Br]"
267
    assert decode_eq(s, "[C@H1](Cl)(F)CBr")
268
269
270
def test_explicit_hydrogen_symbols():
271
    """Tests that SELFIES symbols with explicit hydrogen specifications
272
     are constrained properly.
273
     """
274
275
    assert decode_eq("[CH1][Branch1][C][Cl][#C]", "[CH1](Cl)=C")
276
    assert decode_eq("[CH3][=C]", "[CH3]C")
277
278
    assert decode_eq("[CH4][C][C]", "[CH4]")
279
    assert decode_eq("[C][C][C][CH4]", "CCC")
280
    assert decode_eq("[C][Branch1][Ring2][C][=CH4][C][=C]", "C(C)=C")
281
282
    with pytest.raises(sf.DecoderError):
283
        sf.decoder("[C][C][CH5]")
284
    with pytest.raises(sf.DecoderError):
285
        sf.decoder("[C][C][C][OH9]")
286
287
288
def test_charged_symbols():
289
    """Tests that SELFIES symbols with charges are constrained properly.
290
    """
291
292
    constraints = sf.get_semantic_constraints()
293
    constraints["Sn+4"] = 1
294
    constraints["O-2"] = 2
295
    sf.set_semantic_constraints(constraints)
296
297
    # the following molecules don't make sense, but we use them to test
298
    # selfies. Hence, we can't verify them with RDKit
299
    assert decode_eq("[Sn+4][=C]", "[Sn+4]C")
300
    assert decode_eq("[O-2][#C]", "[O-2]=C")
301
302
    # mixing many symbol types
303
    assert decode_eq("[17O@@H1-2][#C]", "[17O@@H1-2]C")
304
305
    sf.set_semantic_constraints()
306
307
308
def test_standardized_alphabet():
309
    """Tests that equivalent SMILES atom symbols are translated into the
310
    same SELFIES atom symbol.
311
    """
312
313
    assert sf.encoder("[C][O][N][P][F]") == "[CH0][OH0][NH0][PH0][FH0]"
314
    assert sf.encoder("[Fe][Si]") == "[Fe][Si]"
315
    assert sf.encoder("[Fe++][Fe+2]") == "[Fe+2][Fe+2]"
316
    assert sf.encoder("[CH][CH1]") == "[CH1][CH1]"
317
318
319
def test_old_symbols():
320
    """Tests backward compatibility of SELFIES with old (<v2) symbols.
321
    """
322
323
    s = "[C@@Hexpl][Branch1_2][Branch1_1][Branch1_1][C][C][Cl][F]"
324
    assert sf.decoder(s, compatible=True) == "[C@@H1](C)(Cl)F"
325
326
    s = "[C][C][C][C][Expl=Ring1][Ring2][Expl#Ring1][Ring2]"
327
    assert sf.decoder(s, compatible=True) == "C#1CCC#1"
328
329
    long_s = "[C@@Hexpl][=C][C@@Hexpl][N+expl][=C][C+expl][N+expl][O+expl]" \
330
             "[Fe++expl][C@@Hexpl][C][N+expl][Branch1_2][Fe++expl][S+expl]" \
331
             "[=C][Expl=Ring1][Fe++expl][S+expl][Expl=Ring1][O+expl]" \
332
             "[C@@Hexpl][Expl=Ring1][C@@Hexpl][C@@Hexpl][N+expl][Expl=Ring1]" \
333
             "[Expl=Ring1][S+expl][=C]"
334
    try:
335
        sf.decoder(long_s, compatible=True)
336
    except Exception:
337
        assert False
338
339
340
def test_large_selfies_decoding():
341
    """Test that we can decode extremely large SELFIES strings (used to cause a RecursionError)
342
    """
343
344
    large_selfies = "[C]" * 1024
345
    expected_smiles = "C" * 1024
346
347
    assert decode_eq(large_selfies, expected_smiles)
348
349
350
def test_radical_kekulization():
351
    """Tests kekulization of aromatic systems with radicals and charges.
352
    """
353
    
354
    assert roundtrip_eq("c1ccc[c]c1", "C1=CC=C[CH0]=C1")
355
    assert roundtrip_eq("c1[c]n1(C)", "C1=[CH0]N1C")
356
    assert roundtrip_eq("c1[C][n+]1(C)", "C=1[CH0][N+1]=1C")
357
    assert roundtrip_eq("c1nnn[n-]1", "C1=NN=N[N-1]1")
358
    assert roundtrip_eq("c1ccn[c-](C)[n+]1=O", "C1=CC=N[C-1](C)[N+1]1=O")
359
    assert roundtrip_eq("c1ccs[n+]1c2ccccc2", "C=1C=CS[N+1]=1C2=CC=CC=C2")
360
    assert roundtrip_eq("c1ccs[nH+]1", "C=1C=CS[NH1+1]=1")
361
    
362
    
363
def test_novel_charged_symbols():
364
    """Test decoding of updated constraints for charged atoms (update in 2.2.0)."""
365
    assert decode_eq("[N][#C+1][#NH1][#C@H1]", "N#[C+1]")
366
    assert decode_eq("[O+1][=P+1][#P-1][#C@@]", "[O+1]=[P+1]=[P-1]#[C@@]")
367
    assert decode_eq("[=C-1][#S+1][#B]", "[C-1]#[S+1]=B")
368