#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
SELFIES: a robust representation of semantically constrained graphs with an
example application in chemistry (https://arxiv.org/abs/1905.13741)
by Mario Krenn, Florian Haese, AkshatKuman Nigam, Pascal Friederich,
Alan Aspuru-Guzik.
Variational Autoencoder (VAE) for chemistry
comparing SMILES and SELFIES representation using reconstruction
quality, diversity and latent space validity as metrics of
interest
information:
ML framework: pytorch
chemistry framework: RDKit
get_selfie_and_smiles_encodings_for_dataset
generate complete encoding (inclusive alphabet) for SMILES and
SELFIES given a data file
VAEEncoder
fully connected, 3 layer neural network - encodes a one-hot
representation of molecule (in SMILES or SELFIES representation)
to latent space
VAEDecoder
decodes point in latent space using an RNN
latent_space_quality
samples points from latent space, decodes them into molecules,
calculates chemical validity (using RDKit's MolFromSmiles), calculates
diversity
"""
import os
import sys
import time
import numpy as np
import pandas as pd
import torch
import yaml
from rdkit import rdBase
from rdkit.Chem import MolFromSmiles
from torch import nn
import selfies as sf
from data_loader import \
multiple_selfies_to_hot, multiple_smile_to_hot
rdBase.DisableLog('rdApp.error')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def _make_dir(directory):
os.makedirs(directory)
def save_models(encoder, decoder, epoch):
out_dir = './saved_models/{}'.format(epoch)
_make_dir(out_dir)
torch.save(encoder, '{}/E'.format(out_dir))
torch.save(decoder, '{}/D'.format(out_dir))
class VAEEncoder(nn.Module):
def __init__(self, in_dimension, layer_1d, layer_2d, layer_3d,
latent_dimension):
"""
Fully Connected layers to encode molecule to latent space
"""
super(VAEEncoder, self).__init__()
self.latent_dimension = latent_dimension
# Reduce dimension up to second last layer of Encoder
self.encode_nn = nn.Sequential(
nn.Linear(in_dimension, layer_1d),
nn.ReLU(),
nn.Linear(layer_1d, layer_2d),
nn.ReLU(),
nn.Linear(layer_2d, layer_3d),
nn.ReLU()
)
# Latent space mean
self.encode_mu = nn.Linear(layer_3d, latent_dimension)
# Latent space variance
self.encode_log_var = nn.Linear(layer_3d, latent_dimension)
@staticmethod
def reparameterize(mu, log_var):
"""
This trick is explained well here:
https://stats.stackexchange.com/a/16338
"""
std = torch.exp(0.5 * log_var)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
def forward(self, x):
"""
Pass throught the Encoder
"""
# Get results of encoder network
h1 = self.encode_nn(x)
# latent space
mu = self.encode_mu(h1)
log_var = self.encode_log_var(h1)
# Reparameterize
z = self.reparameterize(mu, log_var)
return z, mu, log_var
class VAEDecoder(nn.Module):
def __init__(self, latent_dimension, gru_stack_size, gru_neurons_num,
out_dimension):
"""
Through Decoder
"""
super(VAEDecoder, self).__init__()
self.latent_dimension = latent_dimension
self.gru_stack_size = gru_stack_size
self.gru_neurons_num = gru_neurons_num
# Simple Decoder
self.decode_RNN = nn.GRU(
input_size=latent_dimension,
hidden_size=gru_neurons_num,
num_layers=gru_stack_size,
batch_first=False)
self.decode_FC = nn.Sequential(
nn.Linear(gru_neurons_num, out_dimension),
)
def init_hidden(self, batch_size=1):
weight = next(self.parameters())
return weight.new_zeros(self.gru_stack_size, batch_size,
self.gru_neurons_num)
def forward(self, z, hidden):
"""
A forward pass throught the entire model.
"""
# Decode
l1, hidden = self.decode_RNN(z, hidden)
decoded = self.decode_FC(l1) # fully connected layer
return decoded, hidden
def is_correct_smiles(smiles):
"""
Using RDKit to calculate whether molecule is syntactically and
semantically valid.
"""
if smiles == "":
return False
try:
return MolFromSmiles(smiles, sanitize=True) is not None
except Exception:
return False
def sample_latent_space(vae_encoder, vae_decoder, sample_len):
vae_encoder.eval()
vae_decoder.eval()
gathered_atoms = []
fancy_latent_point = torch.randn(1, 1, vae_encoder.latent_dimension,
device=device)
hidden = vae_decoder.init_hidden()
# runs over letters from molecules (len=size of largest molecule)
for _ in range(sample_len):
out_one_hot, hidden = vae_decoder(fancy_latent_point, hidden)
out_one_hot = out_one_hot.flatten().detach()
soft = nn.Softmax(0)
out_one_hot = soft(out_one_hot)
out_index = out_one_hot.argmax(0)
gathered_atoms.append(out_index.data.cpu().tolist())
vae_encoder.train()
vae_decoder.train()
return gathered_atoms
def latent_space_quality(vae_encoder, vae_decoder, type_of_encoding,
alphabet, sample_num, sample_len):
total_correct = 0
all_correct_molecules = set()
print(f"latent_space_quality:"
f" Take {sample_num} samples from the latent space")
for _ in range(1, sample_num + 1):
molecule_pre = ''
for i in sample_latent_space(vae_encoder, vae_decoder, sample_len):
molecule_pre += alphabet[i]
molecule = molecule_pre.replace(' ', '')
if type_of_encoding == 1: # if SELFIES, decode to SMILES
molecule = sf.decoder(molecule)
if is_correct_smiles(molecule):
total_correct += 1
all_correct_molecules.add(molecule)
return total_correct, len(all_correct_molecules)
def quality_in_valid_set(vae_encoder, vae_decoder, data_valid, batch_size):
data_valid = data_valid[torch.randperm(data_valid.size()[0])] # shuffle
num_batches_valid = len(data_valid) // batch_size
quality_list = []
for batch_iteration in range(min(25, num_batches_valid)):
# get batch
start_idx = batch_iteration * batch_size
stop_idx = (batch_iteration + 1) * batch_size
batch = data_valid[start_idx: stop_idx]
_, trg_len, _ = batch.size()
inp_flat_one_hot = batch.flatten(start_dim=1)
latent_points, mus, log_vars = vae_encoder(inp_flat_one_hot)
latent_points = latent_points.unsqueeze(0)
hidden = vae_decoder.init_hidden(batch_size=batch_size)
out_one_hot = torch.zeros_like(batch, device=device)
for seq_index in range(trg_len):
out_one_hot_line, hidden = vae_decoder(latent_points, hidden)
out_one_hot[:, seq_index, :] = out_one_hot_line[0]
# assess reconstruction quality
quality = compute_recon_quality(batch, out_one_hot)
quality_list.append(quality)
return np.mean(quality_list).item()
def train_model(vae_encoder, vae_decoder,
data_train, data_valid, num_epochs, batch_size,
lr_enc, lr_dec, KLD_alpha,
sample_num, sample_len, alphabet, type_of_encoding):
"""
Train the Variational Auto-Encoder
"""
print('num_epochs: ', num_epochs)
# initialize an instance of the model
optimizer_encoder = torch.optim.Adam(vae_encoder.parameters(), lr=lr_enc)
optimizer_decoder = torch.optim.Adam(vae_decoder.parameters(), lr=lr_dec)
data_train = data_train.clone().detach().to(device)
num_batches_train = int(len(data_train) / batch_size)
quality_valid_list = [0, 0, 0, 0]
for epoch in range(num_epochs):
data_train = data_train[torch.randperm(data_train.size()[0])]
start = time.time()
for batch_iteration in range(num_batches_train): # batch iterator
# manual batch iterations
start_idx = batch_iteration * batch_size
stop_idx = (batch_iteration + 1) * batch_size
batch = data_train[start_idx: stop_idx]
# reshaping for efficient parallelization
inp_flat_one_hot = batch.flatten(start_dim=1)
latent_points, mus, log_vars = vae_encoder(inp_flat_one_hot)
# initialization hidden internal state of RNN (RNN has two inputs
# and two outputs:)
# input: latent space & hidden state
# output: one-hot encoding of one character of molecule & hidden
# state the hidden state acts as the internal memory
latent_points = latent_points.unsqueeze(0)
hidden = vae_decoder.init_hidden(batch_size=batch_size)
# decoding from RNN N times, where N is the length of the largest
# molecule (all molecules are padded)
out_one_hot = torch.zeros_like(batch, device=device)
for seq_index in range(batch.shape[1]):
out_one_hot_line, hidden = vae_decoder(latent_points, hidden)
out_one_hot[:, seq_index, :] = out_one_hot_line[0]
# compute ELBO
loss = compute_elbo(batch, out_one_hot, mus, log_vars, KLD_alpha)
# perform back propogation
optimizer_encoder.zero_grad()
optimizer_decoder.zero_grad()
loss.backward(retain_graph=True)
nn.utils.clip_grad_norm_(vae_decoder.parameters(), 0.5)
optimizer_encoder.step()
optimizer_decoder.step()
if batch_iteration % 30 == 0:
end = time.time()
# assess reconstruction quality
quality_train = compute_recon_quality(batch, out_one_hot)
quality_valid = quality_in_valid_set(vae_encoder, vae_decoder,
data_valid, batch_size)
report = 'Epoch: %d, Batch: %d / %d,\t(loss: %.4f\t| ' \
'quality: %.4f | quality_valid: %.4f)\t' \
'ELAPSED TIME: %.5f' \
% (epoch, batch_iteration, num_batches_train,
loss.item(), quality_train, quality_valid,
end - start)
print(report)
start = time.time()
quality_valid = quality_in_valid_set(vae_encoder, vae_decoder,
data_valid, batch_size)
quality_valid_list.append(quality_valid)
# only measure validity of reconstruction improved
quality_increase = len(quality_valid_list) \
- np.argmax(quality_valid_list)
if quality_increase == 1 and quality_valid_list[-1] > 50.:
corr, unique = latent_space_quality(vae_encoder, vae_decoder,
type_of_encoding, alphabet,
sample_num, sample_len)
else:
corr, unique = -1., -1.
report = 'Validity: %.5f %% | Diversity: %.5f %% | ' \
'Reconstruction: %.5f %%' \
% (corr * 100. / sample_num, unique * 100. / sample_num,
quality_valid)
print(report)
with open('results.dat', 'a') as content:
content.write(report + '\n')
if quality_valid_list[-1] < 70. and epoch > 200:
break
if quality_increase > 20:
print('Early stopping criteria')
break
def compute_elbo(x, x_hat, mus, log_vars, KLD_alpha):
inp = x_hat.reshape(-1, x_hat.shape[2])
target = x.reshape(-1, x.shape[2]).argmax(1)
criterion = torch.nn.CrossEntropyLoss()
recon_loss = criterion(inp, target)
kld = -0.5 * torch.mean(1. + log_vars - mus.pow(2) - log_vars.exp())
return recon_loss + KLD_alpha * kld
def compute_recon_quality(x, x_hat):
x_indices = x.reshape(-1, x.shape[2]).argmax(1)
x_hat_indices = x_hat.reshape(-1, x_hat.shape[2]).argmax(1)
differences = 1. - torch.abs(x_hat_indices - x_indices)
differences = torch.clamp(differences, min=0., max=1.).double()
quality = 100. * torch.mean(differences)
quality = quality.detach().cpu().numpy()
return quality
def get_selfie_and_smiles_encodings_for_dataset(file_path):
"""
Returns encoding, alphabet and length of largest molecule in SMILES and
SELFIES, given a file containing SMILES molecules.
input:
csv file with molecules. Column's name must be 'smiles'.
output:
- selfies encoding
- selfies alphabet
- longest selfies string
- smiles encoding (equivalent to file content)
- smiles alphabet (character based)
- longest smiles string
"""
df = pd.read_csv(file_path)
smiles_list = np.asanyarray(df.smiles)
smiles_alphabet = list(set(''.join(smiles_list)))
smiles_alphabet.append(' ') # for padding
largest_smiles_len = len(max(smiles_list, key=len))
print('--> Translating SMILES to SELFIES...')
selfies_list = list(map(sf.encoder, smiles_list))
all_selfies_symbols = sf.get_alphabet_from_selfies(selfies_list)
all_selfies_symbols.add('[nop]')
selfies_alphabet = list(all_selfies_symbols)
largest_selfies_len = max(sf.len_selfies(s) for s in selfies_list)
print('Finished translating SMILES to SELFIES.')
return selfies_list, selfies_alphabet, largest_selfies_len, \
smiles_list, smiles_alphabet, largest_smiles_len
def main():
content = open('logfile.dat', 'w')
content.close()
content = open('results.dat', 'w')
content.close()
if os.path.exists("settings.yml"):
settings = yaml.safe_load(open("settings.yml", "r"))
else:
print("Expected a file settings.yml but didn't find it.")
return
print('--> Acquiring data...')
type_of_encoding = settings['data']['type_of_encoding']
file_name_smiles = settings['data']['smiles_file']
print('Finished acquiring data.')
if type_of_encoding == 0:
print('Representation: SMILES')
_, _, _, encoding_list, encoding_alphabet, largest_molecule_len = \
get_selfie_and_smiles_encodings_for_dataset(file_name_smiles)
print('--> Creating one-hot encoding...')
data = multiple_smile_to_hot(encoding_list, largest_molecule_len,
encoding_alphabet)
print('Finished creating one-hot encoding.')
elif type_of_encoding == 1:
print('Representation: SELFIES')
encoding_list, encoding_alphabet, largest_molecule_len, _, _, _ = \
get_selfie_and_smiles_encodings_for_dataset(file_name_smiles)
print('--> Creating one-hot encoding...')
data = multiple_selfies_to_hot(encoding_list, largest_molecule_len,
encoding_alphabet)
print('Finished creating one-hot encoding.')
else:
print("type_of_encoding not in {0, 1}.")
return
len_max_molec = data.shape[1]
len_alphabet = data.shape[2]
len_max_mol_one_hot = len_max_molec * len_alphabet
print(' ')
print(f"Alphabet has {len_alphabet} letters, "
f"largest molecule is {len_max_molec} letters.")
data_parameters = settings['data']
batch_size = data_parameters['batch_size']
encoder_parameter = settings['encoder']
decoder_parameter = settings['decoder']
training_parameters = settings['training']
vae_encoder = VAEEncoder(in_dimension=len_max_mol_one_hot,
**encoder_parameter).to(device)
vae_decoder = VAEDecoder(**decoder_parameter,
out_dimension=len(encoding_alphabet)).to(device)
print('*' * 15, ': -->', device)
data = torch.tensor(data, dtype=torch.float).to(device)
train_valid_test_size = [0.5, 0.5, 0.0]
data = data[torch.randperm(data.size()[0])]
idx_train_val = int(len(data) * train_valid_test_size[0])
idx_val_test = idx_train_val + int(len(data) * train_valid_test_size[1])
data_train = data[0:idx_train_val]
data_valid = data[idx_train_val:idx_val_test]
print("start training")
train_model(**training_parameters,
vae_encoder=vae_encoder,
vae_decoder=vae_decoder,
batch_size=batch_size,
data_train=data_train,
data_valid=data_valid,
alphabet=encoding_alphabet,
type_of_encoding=type_of_encoding,
sample_len=len_max_molec)
with open('COMPLETED', 'w') as content:
content.write('exit code: 0')
if __name__ == '__main__':
try:
main()
except AttributeError:
_, error_message, _ = sys.exc_info()
print(error_message)