[992277]: / examples / affinity / train_affinity.py

Download this file

384 lines (347 with data), 14.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
#!/usr/bin/env python3
"""Train Affinity predictor model."""
import argparse
import json
import logging
import os
import sys
from time import time
import numpy as np
import torch
from sklearn.metrics import (
auc,
average_precision_score,
precision_recall_curve,
roc_curve,
)
from paccmann_predictor.models import MODEL_FACTORY
from paccmann_predictor.utils.hyperparams import OPTIMIZER_FACTORY
from paccmann_predictor.utils.utils import get_device
from pytoda.datasets import DrugAffinityDataset
from pytoda.proteins import ProteinLanguage, ProteinFeatureLanguage
from pytoda.smiles import metadata
from pytoda.smiles.smiles_language import SMILESLanguage, SMILESTokenizer
# setup logging
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument(
'train_affinity_filepath', type=str,
help='Path to the drug affinity data.'
)
parser.add_argument(
'test_affinity_filepath', type=str,
help='Path to the drug affinity data.'
)
parser.add_argument(
'receptor_filepath', type=str,
help='Path to the protein profile data. Receptors must be encoded as amino \
acids'
)
parser.add_argument(
'ligand_filepath', type=str,
help='Path to the ligand data. Ligands must be encoded as SMILES'
)
parser.add_argument(
'model_path', type=str,
help='Directory where the model will be stored.'
)
parser.add_argument(
'params_filepath', type=str,
help='Path to the parameter file.'
)
parser.add_argument(
'training_name', type=str,
help='Name for the training.'
)
parser.add_argument(
'-smiles_language_filepath', type=str, default='', required=False,
help='Path to smiles language (contains token_count.json, vocab.json and \
tokenizer_config.json files). If not specified, language from pytoda \
metadata is loaded.'
)
# yapf: enable
def main(
train_affinity_filepath, test_affinity_filepath, receptor_filepath,
ligand_filepath, model_path, params_filepath, training_name,
smiles_language_filepath
):
logger = logging.getLogger(f'{training_name}')
# Process parameter file:
params = {}
with open(params_filepath) as fp:
params.update(json.load(fp))
# Create model directory and dump files
model_dir = os.path.join(model_path, training_name)
os.makedirs(os.path.join(model_dir, 'weights'), exist_ok=True)
os.makedirs(os.path.join(model_dir, 'results'), exist_ok=True)
with open(os.path.join(model_dir, 'model_params.json'), 'w') as fp:
json.dump(params, fp, indent=4)
# Prepare the dataset
logger.info("Start data preprocessing...")
device = get_device()
# Load languages
if smiles_language_filepath == '':
smiles_language_filepath = os.path.join(
os.sep,
*metadata.__file__.split(os.sep)[:-1], 'smiles_language'
)
smiles_language = SMILESTokenizer.from_pretrained(smiles_language_filepath)
smiles_language.set_encoding_transforms(
randomize=None,
add_start_and_stop=params.get('ligand_start_stop_token', True),
padding=params.get('ligand_padding', True),
padding_length=params.get('ligand_padding_length', True),
device=device,
)
smiles_language.set_smiles_transforms(
augment=params.get('augment_smiles', False),
canonical=params.get('smiles_canonical', False),
kekulize=params.get('smiles_kekulize', False),
all_bonds_explicit=params.get('smiles_bonds_explicit', False),
all_hs_explicit=params.get('smiles_all_hs_explicit', False),
remove_bonddir=params.get('smiles_remove_bonddir', False),
remove_chirality=params.get('smiles_remove_chirality', False),
selfies=params.get('selfies', False),
sanitize=params.get('sanitize', False)
)
if params.get('receptor_embedding', 'learned') == 'predefined':
protein_language = ProteinFeatureLanguage(
features=params.get('predefined_embedding', 'blosum')
)
else:
protein_language = ProteinLanguage()
if params.get('ligand_embedding', 'learned') == 'one_hot':
logger.warning(
'ligand_embedding_size parameter in param file is ignored in '
'one_hot embedding setting, ligand_vocabulary_size used instead.'
)
if params.get('receptor_embedding', 'learned') == 'one_hot':
logger.warning(
'receptor_embedding_size parameter in param file is ignored in '
'one_hot embedding setting, receptor_vocabulary_size used instead.'
)
# Assemble datasets
train_dataset = DrugAffinityDataset(
drug_affinity_filepath=train_affinity_filepath,
smi_filepath=ligand_filepath,
protein_filepath=receptor_filepath,
protein_language=protein_language,
smiles_language=smiles_language,
smiles_padding=params.get('ligand_padding', True),
smiles_padding_length=params.get('ligand_padding_length', None),
smiles_add_start_and_stop=params.get('ligand_add_start_stop', True),
smiles_augment=params.get('augment_smiles', False),
smiles_canonical=params.get('smiles_canonical', False),
smiles_kekulize=params.get('smiles_kekulize', False),
smiles_all_bonds_explicit=params.get('smiles_bonds_explicit', False),
smiles_all_hs_explicit=params.get('smiles_all_hs_explicit', False),
smiles_remove_bonddir=params.get('smiles_remove_bonddir', False),
smiles_remove_chirality=params.get('smiles_remove_chirality', False),
smiles_selfies=params.get('selfies', False),
protein_amino_acid_dict=params.get('protein_amino_acid_dict', 'iupac'),
protein_padding=params.get('receptor_padding', True),
protein_padding_length=params.get('receptor_padding_length', None),
protein_add_start_and_stop=params.get('receptor_add_start_stop', True),
protein_augment_by_revert=params.get('protein_augment', False),
device=device,
drug_affinity_dtype=torch.float,
backend='eager',
iterate_dataset=params.get('iterate_dataset', False),
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=params['batch_size'],
shuffle=True,
drop_last=True,
num_workers=params.get('num_workers', 0),
)
test_dataset = DrugAffinityDataset(
drug_affinity_filepath=test_affinity_filepath,
smi_filepath=ligand_filepath,
protein_filepath=receptor_filepath,
protein_language=protein_language,
smiles_language=smiles_language,
smiles_padding=params.get('ligand_padding', True),
smiles_padding_length=params.get('ligand_padding_length', None),
smiles_add_start_and_stop=params.get('ligand_add_start_stop', True),
smiles_augment=False,
smiles_canonical=params.get('smiles_test_canonical', False),
smiles_kekulize=params.get('smiles_kekulize', False),
smiles_all_bonds_explicit=params.get('smiles_bonds_explicit', False),
smiles_all_hs_explicit=params.get('smiles_all_hs_explicit', False),
smiles_remove_bonddir=params.get('smiles_remove_bonddir', False),
smiles_remove_chirality=params.get('smiles_remove_chirality', False),
smiles_selfies=params.get('selfies', False),
protein_amino_acid_dict=params.get('protein_amino_acid_dict', 'iupac'),
protein_padding=params.get('receptor_padding', True),
protein_padding_length=params.get('receptor_padding_length', None),
protein_add_start_and_stop=params.get('receptor_add_start_stop', True),
protein_augment_by_revert=False,
device=device,
drug_affinity_dtype=torch.float,
backend='eager',
iterate_dataset=params.get('iterate_dataset', False),
)
test_loader = torch.utils.data.DataLoader(
dataset=test_dataset,
batch_size=params['batch_size'],
shuffle=True,
drop_last=True,
num_workers=params.get('num_workers', 0),
)
logger.info(
f'Training dataset has {len(train_dataset)} samples, test set has '
f'{len(test_dataset)}.'
)
logger.info(
f'Device for data loader is {train_dataset.device} and for '
f'model is {device}'
)
save_top_model = os.path.join(model_dir, 'weights/{}_{}_{}.pt')
params.update(
{
'ligand_vocabulary_size':
(
train_dataset.smiles_dataset.smiles_language.
number_of_tokens
),
'receptor_vocabulary_size': protein_language.number_of_tokens,
}
)
logger.info(
f'Receptor vocabulary size is {protein_language.number_of_tokens} and '
f'ligand vocabulary size is {train_dataset.smiles_dataset.smiles_language.number_of_tokens}'
)
model_fn = params.get('model_fn', 'bimodal_mca')
model = MODEL_FACTORY[model_fn](params).to(device)
model._associate_language(smiles_language)
model._associate_language(protein_language)
if os.path.isfile(os.path.join(model_dir, 'weights', 'best_mca.pt')):
logger.info('Found existing model, restoring now...')
try:
model.load(os.path.join(model_dir, 'weights', 'best_mca.pt'))
with open(
os.path.join(model_dir, 'results', 'mse.json'), 'r'
) as f:
info = json.load(f)
max_roc_auc = info['best_roc_auc']
min_loss = info['test_loss']
except Exception:
min_loss, max_roc_auc = 100, 0
else:
min_loss, max_roc_auc = 100, 0
# Define optimizer
optimizer = OPTIMIZER_FACTORY[
params.get('optimizer',
'adam')](model.parameters(), lr=params.get('lr', 0.001))
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
params.update({'number_of_parameters': num_params})
logger.info(f'Number of parameters: {num_params}')
logger.info(f'Model: {model}')
# Overwrite params.json file with updated parameters.
with open(os.path.join(model_dir, 'model_params.json'), 'w') as fp:
json.dump(params, fp)
# Start training
logger.info('Training about to start...\n')
t = time()
model.save(save_top_model.format('epoch', '0', model_fn))
for epoch in range(params['epochs']):
model.train()
logger.info(f"== Epoch [{epoch}/{params['epochs']}] ==")
train_loss = 0
for ind, (ligands, receptors, y) in enumerate(train_loader):
if ind % 100 == 0:
logger.info(f'Batch {ind}/{len(train_loader)}')
y_hat, pred_dict = model(ligands, receptors)
loss = model.loss(y_hat, y.to(device))
optimizer.zero_grad()
loss.backward()
# Apply gradient clipping
# torch.nn.utils.clip_grad_norm_(model.parameters(),1e-6)
optimizer.step()
train_loss += loss.item()
logger.info(
"\t **** TRAINING **** "
f"Epoch [{epoch + 1}/{params['epochs']}], "
f"loss: {train_loss / len(train_loader):.5f}. "
f"This took {time() - t:.1f} secs."
)
t = time()
# Measure validation performance
model.eval()
with torch.no_grad():
test_loss = 0
predictions = []
labels = []
for ind, (ligands, receptors, y) in enumerate(test_loader):
y_hat, pred_dict = model(
ligands.to(device), receptors.to(device)
)
predictions.append(y_hat)
labels.append(y.clone())
loss = model.loss(y_hat, y.to(device))
test_loss += loss.item()
predictions = torch.cat(predictions, dim=0).flatten().cpu().numpy()
labels = torch.cat(labels, dim=0).flatten().cpu().numpy()
test_loss = test_loss / len(test_loader)
fpr, tpr, _ = roc_curve(labels, predictions)
test_roc_auc = auc(fpr, tpr)
# calculations for visualization plot
precision, recall, _ = precision_recall_curve(labels, predictions)
avg_precision = average_precision_score(labels, predictions)
test_loss = test_loss / len(test_loader)
logger.info(
f"\t **** TESTING **** Epoch [{epoch + 1}/{params['epochs']}], "
f"loss: {test_loss:.5f}, ROC-AUC: {test_roc_auc:.3f}, "
f"Average precision: {avg_precision:.3f}."
)
def save(path, metric, typ, val=None):
model.save(path.format(typ, metric, model_fn))
info = {
'best_roc_auc': str(max_roc_auc),
'test_loss': str(min_loss),
}
with open(
os.path.join(model_dir, 'results', metric + '.json'), 'w'
) as f:
json.dump(info, f)
np.save(
os.path.join(model_dir, 'results', metric + '_preds.npy'),
np.vstack([predictions, labels]),
)
if typ == 'best':
logger.info(
f'\t New best performance in "{metric}"'
f' with value : {val:.7f} in epoch: {epoch}'
)
if test_roc_auc > max_roc_auc:
max_roc_auc = test_roc_auc
save(save_top_model, 'ROC-AUC', 'best', max_roc_auc)
ep_roc = epoch
roc_auc_loss = test_loss
if test_loss < min_loss:
min_loss = test_loss
save(save_top_model, 'loss', 'best', min_loss)
ep_loss = epoch
loss_roc_auc = test_roc_auc
if (epoch + 1) % params.get('save_model', 100) == 0:
save(save_top_model, 'epoch', str(epoch))
logger.info(
'Overall best performances are: \n \t'
f'Loss = {min_loss:.4f} in epoch {ep_loss} '
f'\t (ROC-AUC was {loss_roc_auc:4f}) \n \t'
f'ROC-AUC = {max_roc_auc:.4f} in epoch {ep_roc} '
f'\t (Loss was {roc_auc_loss:4f})'
)
save(save_top_model, 'training', 'done')
logger.info('Done with training, models saved, shutting down.')
if __name__ == '__main__':
# parse arguments
args = parser.parse_args()
# run the training
main(
args.train_affinity_filepath, args.test_affinity_filepath,
args.receptor_filepath, args.ligand_filepath, args.model_path,
args.params_filepath, args.training_name, args.smiles_language_filepath
)