[d6730e]: / tests / test_scoring.py

Download this file

280 lines (219 with data), 10.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import os
from types import GeneratorType
from tempfile import mkdtemp, NamedTemporaryFile
import numpy as np
from numpy.testing import assert_almost_equal, assert_array_almost_equal
import pytest
from sklearn.metrics import r2_score
import oddt
from oddt.scoring import scorer, ensemble_descriptor, ensemble_model
from oddt.scoring.descriptors import (autodock_vina_descriptor,
fingerprints,
oddt_vina_descriptor)
from oddt.scoring.models.classifiers import neuralnetwork
from oddt.scoring.models import regressors
from oddt.scoring.functions import rfscore, nnscore, PLECscore
test_data_dir = os.path.dirname(os.path.abspath(__file__))
actives_sdf = os.path.join(test_data_dir, 'data', 'dude', 'xiap',
'actives_docked.sdf')
receptor_pdb = os.path.join(test_data_dir, 'data', 'dude', 'xiap',
'receptor_rdkit.pdb')
results = os.path.join(test_data_dir, 'data', 'results', 'xiap')
@pytest.mark.filterwarnings('ignore:Data with input dtype int64 was converted')
def test_scorer():
np.random.seed(42)
# toy example with made up values
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))
values = [0]*5 + [1]*5
test_values = [0, 0, 1, 1, 0]
if oddt.toolkit.backend == 'ob':
fp = 'fp2'
else:
fp = 'rdkit'
simple_scorer = scorer(neuralnetwork(), fingerprints(fp))
simple_scorer.fit(mols[:10], values)
predictions = simple_scorer.predict(mols[10:15])
assert_array_almost_equal(predictions, [0, 1, 0, 1, 0])
score = simple_scorer.score(mols[10:15], test_values)
assert_almost_equal(score, 0.6)
scored_mols = [simple_scorer.predict_ligand(mol) for mol in mols[10:15]]
single_predictions = [float(mol.data['score']) for mol in scored_mols]
assert_array_almost_equal(predictions, single_predictions)
scored_mols_gen = simple_scorer.predict_ligands(mols[10:15])
assert isinstance(scored_mols_gen, GeneratorType)
gen_predictions = [float(mol.data['score']) for mol in scored_mols_gen]
assert_array_almost_equal(predictions, gen_predictions)
def test_ensemble_descriptor():
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))[:10]
list(map(lambda x: x.addh(), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh()
desc1 = rfscore(version=1).descriptor_generator
desc2 = oddt_vina_descriptor()
ensemble = ensemble_descriptor((desc1, desc2))
ensemble.set_protein(rec)
assert len(ensemble) == len(desc1) + len(desc2)
# set protein
assert desc1.protein == rec
assert desc2.protein == rec
ensemble_scores = ensemble.build(mols)
scores1 = desc1.build(mols)
scores2 = desc2.build(mols)
assert_array_almost_equal(ensemble_scores, np.hstack((scores1, scores2)))
def test_ensemble_model():
X = np.vstack((np.arange(30, 10, -2, dtype='float64'),
np.arange(100, 90, -1, dtype='float64'))).T
Y = np.arange(10, dtype='float64')
rf = regressors.randomforest(random_state=42)
nn = regressors.neuralnetwork(solver='lbfgs', random_state=42)
ensemble = ensemble_model((rf, nn))
# we do not need to fit underlying models, they change when we fit enseble
ensemble.fit(X, Y)
pred = ensemble.predict(X)
mean_pred = np.vstack((rf.predict(X), nn.predict(X))).mean(axis=0)
assert_array_almost_equal(pred, mean_pred)
assert_almost_equal(ensemble.score(X, Y), r2_score(Y, pred))
# ensemble of a single model should behave exactly like this model
nn = neuralnetwork(solver='lbfgs', random_state=42)
ensemble = ensemble_model((nn,))
ensemble.fit(X, Y)
assert_array_almost_equal(ensemble.predict(X), nn.predict(X))
assert_almost_equal(ensemble.score(X, Y), nn.score(X, Y))
def test_original_vina():
"""Check orignal Vina partial scores descriptor"""
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))
list(map(lambda x: x.addh(), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh()
# Delete molecule which has differences in Acceptor-Donor def in RDK and OB
del mols[65]
vina_scores = ['vina_gauss1',
'vina_gauss2',
'vina_repulsion',
'vina_hydrophobic',
'vina_hydrogen']
# save correct results (for future use)
# np.savetxt(os.path.join(results, 'autodock_vina_scores.csv'),
# autodock_vina_descriptor(protein=rec,
# vina_scores=vina_scores).build(mols),
# fmt='%.16g',
# delimiter=',')
autodock_vina_results_correct = np.loadtxt(
os.path.join(results, 'autodock_vina_scores.csv'),
delimiter=',',
dtype=np.float64)
autodock_vina_results = autodock_vina_descriptor(
protein=rec,
vina_scores=vina_scores).build(mols)
assert_array_almost_equal(autodock_vina_results,
autodock_vina_results_correct,
decimal=4)
def test_internal_vina():
"""Compare internal vs orignal Vina partial scores"""
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))
list(map(lambda x: x.addh(), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh()
# Delete molecule which has differences in Acceptor-Donor def in RDK and OB
del mols[65]
vina_scores = ['vina_gauss1',
'vina_gauss2',
'vina_repulsion',
'vina_hydrophobic',
'vina_hydrogen']
autodock_vina_results = np.loadtxt(
os.path.join(results, 'autodock_vina_scores.csv'),
delimiter=',',
dtype=np.float64)
oddt_vina_results = oddt_vina_descriptor(
protein=rec, vina_scores=vina_scores).build(mols)
assert_array_almost_equal(oddt_vina_results, autodock_vina_results, decimal=4)
def test_rfscore_desc():
"""Test RFScore v1-3 descriptors generators"""
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))
list(map(lambda x: x.addh(), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh()
# Delete molecule which has differences in Acceptor-Donor def in RDK and OB
del mols[65]
for v in [1, 2, 3]:
descs = rfscore(version=v, protein=rec).descriptor_generator.build(mols)
# save correct results (for future use)
# np.savetxt(os.path.join(results, 'rfscore_v%i_descs.csv' % v),
# descs,
# fmt='%.16g',
# delimiter=',')
descs_correct = np.loadtxt(
os.path.join(results, 'rfscore_v%i_descs.csv' % v),
delimiter=',')
# help debug errors
for i in range(descs.shape[1]):
mask = np.abs(descs[:, i] - descs_correct[:, i]) > 1e-4
if mask.sum() > 1:
print(i, np.vstack((descs[mask, i], descs_correct[mask, i])))
assert_array_almost_equal(descs, descs_correct, decimal=4)
def test_nnscore_desc():
"""Test NNScore descriptors generators"""
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))
list(map(lambda x: x.addh(only_polar=True), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh(only_polar=True)
# Delete molecule which has differences in Acceptor-Donor def in RDK and OB
del mols[65]
gen = nnscore(protein=rec).descriptor_generator
descs = gen.build(mols)
# save correct results (for future use)
# np.savetxt(os.path.join(results, 'nnscore_descs.csv'),
# descs,
# fmt='%.16g',
# delimiter=',')
if oddt.toolkit.backend == 'ob':
descs_correct = np.loadtxt(os.path.join(results, 'nnscore_descs_ob.csv'),
delimiter=',')
else:
descs_correct = np.loadtxt(os.path.join(results, 'nnscore_descs_rdk.csv'),
delimiter=',')
# help debug errors
for i in range(descs.shape[1]):
mask = np.abs(descs[:, i] - descs_correct[:, i]) > 1e-4
if mask.sum() > 1:
print(i, gen.titles[i], mask.sum())
print(np.vstack((descs[mask, i], descs_correct[mask, i])))
assert_array_almost_equal(descs, descs_correct, decimal=4)
models = ([PLECscore(n_jobs=1, version=v, size=2048)
for v in ['linear', 'nn', 'rf']] +
[nnscore(n_jobs=1)] +
[rfscore(version=v, n_jobs=1) for v in [1, 2, 3]])
@pytest.mark.parametrize('model', models)
def test_model_train(model):
mols = list(oddt.toolkit.readfile('sdf', actives_sdf))[:10]
list(map(lambda x: x.addh(), mols))
rec = next(oddt.toolkit.readfile('pdb', receptor_pdb))
rec.protein = True
rec.addh()
data_dir = os.path.join(test_data_dir, 'data')
home_dir = mkdtemp()
pdbbind_versions = (2007, 2013, 2016)
pdbbind_dir = os.path.join(data_dir, 'pdbbind')
for pdbbind_v in pdbbind_versions:
version_dir = os.path.join(data_dir, 'v%s' % pdbbind_v)
if not os.path.isdir(version_dir):
os.symlink(pdbbind_dir, version_dir)
with NamedTemporaryFile(suffix='.pickle') as f:
model.gen_training_data(data_dir, pdbbind_versions=pdbbind_versions,
home_dir=home_dir)
model.train(home_dir=home_dir, sf_pickle=f.name)
model.set_protein(rec)
# check if protein setting was successful
assert model.protein == rec
if hasattr(model.descriptor_generator, 'protein'):
assert model.descriptor_generator.protein == rec
preds = model.predict(mols)
assert len(preds) == 10
assert preds.dtype == np.float
assert model.score(mols, preds) == 1.0