|
a |
|
b/tests/test_metrics.py |
|
|
1 |
import numpy as np |
|
|
2 |
from numpy.testing import assert_almost_equal |
|
|
3 |
|
|
|
4 |
from oddt.metrics import (roc_auc, roc_log_auc, random_roc_log_auc, |
|
|
5 |
enrichment_factor, rie, bedroc, |
|
|
6 |
rmse, standard_deviation_error) |
|
|
7 |
|
|
|
8 |
|
|
|
9 |
np.random.seed(42) |
|
|
10 |
|
|
|
11 |
# Generate test data for classification |
|
|
12 |
classes = np.array([0] * 90000 + [1] * 10000) |
|
|
13 |
# poorly separated |
|
|
14 |
poor_classes = np.random.rand(100000) * 100 |
|
|
15 |
|
|
|
16 |
# well separated |
|
|
17 |
good_classes = np.concatenate([np.random.rand(90000) * 10 + 100, |
|
|
18 |
np.random.rand(10000) * 10 + 1000]) |
|
|
19 |
|
|
|
20 |
# Generate test data for regression |
|
|
21 |
values = np.arange(100000) |
|
|
22 |
poor_values = np.random.rand(100000) * 100 # poorly predicted |
|
|
23 |
good_values = np.arange(100000) + np.random.rand(100000) # correctly predicted |
|
|
24 |
|
|
|
25 |
|
|
|
26 |
def test_roc_auc(): |
|
|
27 |
score = roc_auc(classes, poor_classes) |
|
|
28 |
assert score <= 0.55 |
|
|
29 |
assert score >= 0.45 |
|
|
30 |
|
|
|
31 |
assert roc_auc(classes, good_classes, ascending_score=True) == 0.0 |
|
|
32 |
assert roc_auc(classes, good_classes, ascending_score=False) == 1.0 |
|
|
33 |
|
|
|
34 |
|
|
|
35 |
def test_roc_log_auc(): |
|
|
36 |
random_score = random_roc_log_auc() |
|
|
37 |
score = roc_log_auc(classes, poor_classes) |
|
|
38 |
assert np.abs(score - random_score) < 0.01 |
|
|
39 |
|
|
|
40 |
assert roc_log_auc(classes, good_classes, ascending_score=True) == 0 |
|
|
41 |
assert roc_log_auc(classes, good_classes, ascending_score=False) == 1 |
|
|
42 |
|
|
|
43 |
|
|
|
44 |
def test_enrichment(): |
|
|
45 |
order = sorted(range(len(poor_classes)), key=lambda k: poor_classes[k], |
|
|
46 |
reverse=True) |
|
|
47 |
ef = enrichment_factor(classes[order], poor_classes[order]) |
|
|
48 |
assert ef <= 1.5 |
|
|
49 |
|
|
|
50 |
order = sorted(range(len(good_classes)), key=lambda k: good_classes[k], |
|
|
51 |
reverse=True) |
|
|
52 |
ef = enrichment_factor(classes[order], good_classes[order]) |
|
|
53 |
assert ef == 10 |
|
|
54 |
|
|
|
55 |
ef = enrichment_factor(classes[order], good_classes[order], |
|
|
56 |
kind='percentage') |
|
|
57 |
assert ef == 1 |
|
|
58 |
|
|
|
59 |
|
|
|
60 |
def test_rmse(): |
|
|
61 |
assert rmse(values, poor_values) >= 30 |
|
|
62 |
assert rmse(values, good_values) <= 1 |
|
|
63 |
|
|
|
64 |
|
|
|
65 |
def test_standard_deviation_error(): |
|
|
66 |
assert standard_deviation_error(values, good_values) < 1.1 |
|
|
67 |
assert standard_deviation_error(values, poor_values) > 2e4 |
|
|
68 |
|
|
|
69 |
|
|
|
70 |
def test_rie(): |
|
|
71 |
order = sorted(range(len(poor_classes)), key=lambda k: poor_classes[k], |
|
|
72 |
reverse=True) |
|
|
73 |
rie_score = rie(classes[order], poor_classes[order]) |
|
|
74 |
assert rie_score <= 1.1 |
|
|
75 |
|
|
|
76 |
order = sorted(range(len(good_classes)), key=lambda k: good_classes[k], |
|
|
77 |
reverse=True) |
|
|
78 |
rie_score = rie(classes[order], good_classes[order]) |
|
|
79 |
assert_almost_equal(rie_score, 8.646647185) |
|
|
80 |
|
|
|
81 |
|
|
|
82 |
def test_bedroc(): |
|
|
83 |
order = sorted(range(len(poor_classes)), key=lambda k: poor_classes[k], |
|
|
84 |
reverse=True) |
|
|
85 |
bedroc_score = bedroc(classes[order], poor_classes[order]) |
|
|
86 |
assert bedroc_score < 0.2 |
|
|
87 |
|
|
|
88 |
order = sorted(range(len(good_classes)), key=lambda k: good_classes[k], |
|
|
89 |
reverse=True) |
|
|
90 |
bedroc_score = bedroc(classes[order], good_classes[order]) |
|
|
91 |
assert_almost_equal(bedroc_score, 1.0) |