[3b722e]: / tests / test_fingerprints.py

Download this file

618 lines (531 with data), 33.6 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import os
import sys
from itertools import combinations
import numpy as np
from scipy.sparse import vstack as sparse_vstack
from numpy.testing import (assert_array_equal,
assert_array_almost_equal,
assert_almost_equal)
import pytest
import oddt
from oddt.fingerprints import (InteractionFingerprint,
SimpleInteractionFingerprint,
ECFP,
_ECFP_atom_repr,
SPLIF,
similarity_SPLIF,
PLEC,
fold,
MIN_HASH_VALUE,
MAX_HASH_VALUE,
sparse_to_dense,
sparse_to_csr_matrix,
csr_matrix_to_sparse,
dense_to_sparse,
get_molecular_shingles,
hash_fnv1a_python,
dice,
tanimoto)
from .utils import shuffle_mol
test_data_dir = os.path.dirname(os.path.abspath(__file__))
protein = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/pdbbind/10gs/10gs_pocket.pdb')))
protein.protein = True
protein.addh(only_polar=True)
ligand = next(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/pdbbind/10gs/10gs_ligand.sdf')))
ligand.addh(only_polar=True)
def test_folding():
"""FP Folding"""
# Upper bound
assert_array_equal(fold([MAX_HASH_VALUE], 1024), [1023])
assert_array_equal(fold([MAX_HASH_VALUE], 1234567890), [1234567889])
assert_array_equal(fold([MAX_HASH_VALUE], MAX_HASH_VALUE / 2),
[MAX_HASH_VALUE / 2 - 1])
assert_array_equal(fold([MAX_HASH_VALUE], MAX_HASH_VALUE - 1),
[MAX_HASH_VALUE - 2])
# Lower bound
assert_array_equal(fold([MIN_HASH_VALUE], 1024), [0])
assert_array_equal(fold([MIN_HASH_VALUE], 1234567890), [0])
assert_array_equal(fold([MIN_HASH_VALUE], MAX_HASH_VALUE / 2), [0])
assert_array_equal(fold([MIN_HASH_VALUE], MAX_HASH_VALUE - 1), [0])
# Range check
fp = np.arange(1, MAX_HASH_VALUE, 1e6, dtype=int)
assert_array_equal(fold(fp, MAX_HASH_VALUE), fp - 1)
@pytest.mark.skipif(sys.version_info > (3, 7), reason="Only testable with old Python Hash implementation")
def test_hashing_function():
"""Verify the implementation of Python 2.4-3.7 hash function in Python"""
sample_list = list(range(-10, 10))
# add nested structure
sample_list.append(tuple(sample_list))
sample_list.append(tuple(sample_list))
for sample_tuple in combinations(sample_list, r=5):
python_hash = hash(sample_tuple)
custom_hash = hash_fnv1a_python(sample_tuple)
assert python_hash == custom_hash
def test_sparse_densify():
"""FP densify"""
sparse_fp = [0, 33, 49, 53, 107, 156, 161, 203, 215, 230, 251, 269, 299,
323, 331, 376, 389, 410, 427, 430, 450, 484, 538, 592, 593,
636, 646, 658, 698, 699, 702, 741, 753, 807, 850, 861, 882,
915, 915, 915, 969, 969, 1023]
# count vectors
dense = sparse_to_dense(sparse_fp, size=1024, count_bits=True)
csr = sparse_to_csr_matrix(sparse_fp, size=1024, count_bits=True)
assert_array_equal(dense.reshape(1, -1), csr.toarray())
resparsed = dense_to_sparse(dense)
resparsed_csr = csr_matrix_to_sparse(csr)
assert_array_equal(sparse_fp, resparsed)
assert_array_equal(sparse_fp, resparsed_csr)
# bool vectors
dense = sparse_to_dense(sparse_fp, size=1024, count_bits=False)
csr = sparse_to_csr_matrix(sparse_fp, size=1024, count_bits=False)
assert_array_equal(dense.reshape(1, -1), csr.toarray())
resparsed = dense_to_sparse(dense)
resparsed_csr = csr_matrix_to_sparse(csr)
assert_array_equal(np.unique(sparse_fp), resparsed)
assert_array_equal(np.unique(sparse_fp), resparsed_csr)
# test stacking
np.random.seed(0)
sparse_fps = np.random.randint(0, 1024, size=(20, 100))
dense = np.vstack([sparse_to_dense(fp, size=1024) for fp in sparse_fps])
csr = sparse_vstack(sparse_to_csr_matrix(fp, size=1024) for fp in sparse_fps)
assert_array_equal(dense, csr.toarray())
# test exceptions
with pytest.raises(ValueError):
csr_matrix_to_sparse(np.array([1, 2, 3]))
def test_InteractionFingerprint():
"""Interaction Fingerprint test"""
if oddt.toolkit.backend == 'ob':
IFP = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
else:
IFP = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
assert_array_equal(IFP, InteractionFingerprint(ligand, protein))
def test_SimpleInteractionFingerprint():
"""Simple Interaction Fingerprint test """
SIFP = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2,
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]
assert_array_equal(SIFP, SimpleInteractionFingerprint(ligand, protein))
def test_IFP_SIFP_Folding_cum_sum():
"""Checks, whether InteractionFingerprint and SimpleInteractionFingerprint outcomes matches"""
IFP = np.sum(InteractionFingerprint(ligand, protein), axis=0)
SIFP = np.sum(SimpleInteractionFingerprint(ligand, protein), axis=0)
assert_array_equal(IFP, SIFP)
def test_similarity():
"""FP similarity"""
mols = list(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/dude/xiap/actives_docked.sdf')))
mols = list(filter(lambda x: x.title == '312335', mols))
list(map(lambda x: x.addh(only_polar=True), mols))
receptor = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/dude/xiap/receptor_rdkit.pdb')))
receptor.protein = True
receptor.addh(only_polar=True)
ref = SimpleInteractionFingerprint(mols[0], receptor)
outcome = [dice(ref, SimpleInteractionFingerprint(
mol, receptor)) for mol in mols[1:]]
target_outcome = np.array([0.742857, 0.645161, 0.727273, 0.571429,
0.727273, 0.588235, 0.75, 0.551724,
0.551724, 0.6875, 0.514286, 0.6875,
0.592593, 0.647059, 0.736842, 0.62069,
0.545455, 0.533333, 0.606061])
assert_array_almost_equal(outcome, target_outcome)
outcome = [tanimoto(ref, SimpleInteractionFingerprint(
mol, receptor)) for mol in mols[1:]]
target_outcome = np.array([0.636364, 0.5, 0.666667, 0.384615, 0.666667,
0.545455, 0.666667, 0.5, 0.363636, 0.666667,
0.555556, 0.555556, 0.625, 0.6, 0.727273,
0.555556, 0.5, 0.4, 0.363636])
assert_array_almost_equal(outcome, target_outcome)
def test_sparse_similarity():
"""Sparse similarity"""
mol1 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)C)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol2 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)O)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol1_fp_dense = ECFP(mol1, depth=8, size=4096, sparse=False)
mol2_fp_dense = ECFP(mol2, depth=8, size=4096, sparse=False)
mol1_fp_sparse = ECFP(mol1, depth=8, size=4096, sparse=True)
mol2_fp_sparse = ECFP(mol2, depth=8, size=4096, sparse=True)
assert_almost_equal(dice(mol1_fp_sparse, mol2_fp_sparse, sparse=True),
dice(mol1_fp_dense, mol2_fp_dense))
assert dice([], [], sparse=True) == 0.
assert dice(np.zeros(10), np.zeros(10), sparse=False) == 0.
assert_almost_equal(tanimoto(mol1_fp_sparse, mol2_fp_sparse, sparse=True),
tanimoto(mol1_fp_dense, mol2_fp_dense))
assert tanimoto([], [], sparse=True) == 0.
assert tanimoto(np.zeros(10), np.zeros(10), sparse=False) == 0.
def test_ecfp_repr():
"""Test exact ECFP representation to track down the changes"""
mol = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)C)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
res = [(6, 0, 1, 3, 0, 0, 0), (6, 0, 3, 0, 0, 1, 1), (6, 0, 3, 0, 0, 1, 1), (6, 0, 3, 0, 0, 1, 1),
(6, 0, 2, 1, 0, 1, 1), (6, 0, 2, 1, 0, 1, 1), (6, 0, 2, 1, 0, 1, 1), (6, 0, 1, 3, 0, 0, 0),
(7, 0, 2, 1, 0, 0, 0), (6, 0, 3, 0, 0, 0, 0), (8, 0, 1, 0, 0, 0, 0), (6, 0, 2, 2, 0, 0, 0),
(7, 0, 3, 0, 0, 1, 0), (6, 0, 2, 2, 0, 1, 0), (6, 0, 2, 2, 0, 1, 0), (7, 0, 3, 0, 0, 1, 0),
(6, 0, 2, 2, 0, 1, 0), (6, 0, 2, 2, 0, 1, 0), (6, 0, 2, 2, 0, 0, 0), (6, 0, 3, 0, 0, 0, 0),
(8, 0, 1, 0, 0, 0, 0), (7, 0, 3, 0, 0, 1, 0), (6, 0, 2, 2, 0, 1, 0), (6, 0, 2, 2, 0, 1, 0),
(6, 0, 3, 0, 0, 1, 1), (6, 0, 3, 0, 0, 1, 1), (6, 0, 2, 2, 0, 1, 0), (6, 0, 2, 1, 0, 1, 1),
(6, 0, 2, 1, 0, 1, 1), (16, 0, 2, 0, 0, 1, 1)]
assert_array_equal([_ECFP_atom_repr(mol, i) for i in range(len(mol.atoms))], res)
def test_ecfp():
"""ECFP fingerprints"""
mol1 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)C)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol2 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)O)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol1_fp = ECFP(mol1, depth=8, size=4096, sparse=False)
mol2_fp = ECFP(mol2, depth=8, size=4096, sparse=False)
ref1 = [2, 100, 176, 185, 200, 203, 359, 382, 447, 509, 518, 550, 572, 583,
598, 606, 607, 684, 818, 821, 832, 861, 960, 992, 1006, 1019, 1042,
1050, 1059, 1103, 1175, 1281, 1315, 1377, 1431, 1470, 1479, 1512,
1577, 1588, 1598, 1620, 1633, 1647, 1663, 1723, 1749, 1751, 1775,
1781, 1821, 1837, 1899, 1963, 1969, 1986, 2013, 2253, 2343, 2355,
2368, 2435, 2547, 2654, 2657, 2702, 2722, 2725, 2803, 2816, 2853,
2870, 2920, 2992, 3028, 3056, 3074, 3103, 3190, 3203, 3277, 3321,
3362, 3377, 3383, 3401, 3512, 3546, 3552, 3585, 3593, 3617, 3674,
3759, 3784, 3790, 3832, 3895, 3937, 3956, 3974, 4007, 4033]
ref2 = [43, 100, 176, 200, 203, 231, 382, 396, 447, 490, 518, 583, 606,
607, 650, 818, 821, 832, 840, 861, 907, 950, 960, 992, 1006, 1013,
1019, 1042, 1050, 1059, 1103, 1104, 1112, 1175, 1281, 1293, 1315,
1377, 1431, 1470, 1512, 1543, 1577, 1588, 1598, 1633, 1647, 1663,
1723, 1749, 1751, 1757, 1759, 1775, 1781, 1821, 1837, 1880, 1963,
1969, 1986, 2253, 2355, 2368, 2435, 2544, 2547, 2654, 2702, 2722,
2725, 2726, 2799, 2816, 2853, 2870, 2920, 2992, 3028, 3074, 3190,
3203, 3277, 3290, 3333, 3362, 3383, 3401, 3512, 3546, 3552, 3585,
3593, 3617, 3640, 3660, 3674, 3759, 3784, 3790, 3805, 3832, 3856,
3895, 3924, 3956, 3974, 3992, 4007, 4033]
assert_array_equal(ref1, np.where(mol1_fp)[0])
assert_array_equal(ref2, np.where(mol2_fp)[0])
assert_almost_equal(dice(mol1_fp, mol2_fp), 0.69999999)
assert_almost_equal(tanimoto(mol1_fp, mol2_fp), 0.63846153)
# adding Hs should not change anything
mol1.addh()
mol2.addh()
mol1_fp = ECFP(mol1, depth=8, size=4096, sparse=False)
mol2_fp = ECFP(mol2, depth=8, size=4096, sparse=False)
assert_array_equal(ref1, np.where(mol1_fp)[0])
assert_array_equal(ref2, np.where(mol2_fp)[0])
assert_almost_equal(dice(mol1_fp, mol2_fp), 0.69999999)
assert_almost_equal(tanimoto(mol1_fp, mol2_fp), 0.63846153)
# removig Hs should not change anything
mol1.removeh()
mol2.removeh()
mol1_fp = ECFP(mol1, depth=8, size=4096, sparse=False)
mol2_fp = ECFP(mol2, depth=8, size=4096, sparse=False)
assert_array_equal(ref1, np.where(mol1_fp)[0])
assert_array_equal(ref2, np.where(mol2_fp)[0])
assert_almost_equal(dice(mol1_fp, mol2_fp), 0.69999999)
assert_almost_equal(tanimoto(mol1_fp, mol2_fp), 0.63846153)
def test_fcfp():
"""FCFP fingerprints"""
mol1 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)C)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol2 = oddt.toolkit.readstring("smi", "CC1=C(C(=CC=C1)O)NC(=O)CN2CCN(CC2)CC(=O)N3CCC4=C(C3)C=CS4")
mol1_fp = ECFP(mol1, depth=8, size=4096,
sparse=False, use_pharm_features=True)
mol2_fp = ECFP(mol2, depth=8, size=4096,
sparse=False, use_pharm_features=True)
ref1 = [46, 111, 305, 310, 362, 384, 409, 451, 467, 548, 572, 595, 607,
608, 620, 659, 691, 699, 724, 743, 752, 842, 926, 935, 974, 1037,
1072, 1094, 1135, 1143, 1161, 1172, 1313, 1325, 1368, 1399, 1461,
1486, 1488, 1492, 1603, 1619, 1648, 1665, 1666, 1838, 1887, 1900,
1948, 1961, 1972, 1975, 1996, 2000, 2052, 2085, 2094, 2174, 2232,
2236, 2368, 2382, 2383, 2402, 2483, 2492, 2527, 2593, 2616, 2706,
2789, 2899, 2922, 2945, 2966, 3102, 3117, 3176, 3189, 3215, 3225,
3297, 3326, 3349, 3373, 3513, 3525, 3535, 3601, 3619, 3780, 3820,
3897, 3919, 3976, 3981, 4050, 4079, 4091]
ref2 = [46, 111, 143, 172, 259, 305, 362, 409, 451, 467, 507, 518, 548,
583, 595, 607, 608, 620, 639, 691, 693, 724, 752, 784, 825, 842,
926, 1037, 1087, 1094, 1098, 1135, 1143, 1161, 1172, 1286, 1325,
1368, 1371, 1395, 1399, 1461, 1486, 1488, 1492, 1565, 1619, 1648,
1655, 1665, 1887, 1890, 1900, 1948, 1961, 1968, 1972, 1975, 1976,
1996, 2000, 2007, 2094, 2125, 2174, 2232, 2236, 2368, 2382, 2383,
2483, 2492, 2571, 2593, 2606, 2638, 2706, 2789, 2922, 2945, 2966,
2986, 3030, 3100, 3102, 3117, 3227, 3326, 3350, 3373, 3406, 3419,
3535, 3577, 3619, 3697, 3742, 3820, 3839, 3919, 3981, 4043, 4050,
4079, 4091]
assert_array_equal(ref1, np.where(mol1_fp)[0])
assert_array_equal(ref2, np.where(mol2_fp)[0])
assert_almost_equal(dice(mol1_fp, mol2_fp), 0.64074074)
assert_almost_equal(tanimoto(mol1_fp, mol2_fp), 0.5)
# adding Hs should not change anything
mol1.addh()
mol2.addh()
assert_array_equal(ref1, np.where(mol1_fp)[0])
assert_array_equal(ref2, np.where(mol2_fp)[0])
assert_almost_equal(dice(mol1_fp, mol2_fp), 0.64074074)
assert_almost_equal(tanimoto(mol1_fp, mol2_fp), 0.5)
def test_ecfp_invaraiants():
"""ECFP: test random reordering"""
sildenafil = oddt.toolkit.readstring("smi", "CCCc1nn(C)c2c(=O)[nH]c(-c3cc(S(=O)(=O)N4CCN(C)CC4)ccc3OCC)nc12")
params = {'depth': 4, 'size': 4096, 'sparse': True}
fp = ECFP(sildenafil, **params)
for n in range(10):
sildenafil = shuffle_mol(sildenafil)
assert_array_equal(fp, ECFP(sildenafil, **params))
def test_splif():
"""SPLIF fingerprints"""
mols = list(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/dude/xiap/actives_docked.sdf')))
mols = list(filter(lambda x: x.title == '312335', mols))
list(map(lambda x: x.addh(only_polar=True), mols))
receptor = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/dude/xiap/receptor_rdkit.pdb')))
receptor.protein = True
receptor.addh(only_polar=True)
splif = SPLIF(mols[0], receptor)
reference = [6, 38, 49, 53, 53, 53, 70, 70, 81, 81, 81, 81, 165, 216, 219,
249, 330, 330, 333, 377, 380, 396, 396, 396, 423, 423, 479,
479, 498, 498, 498, 570, 592, 625, 638, 768, 768, 817, 818,
818, 818, 818, 858, 884, 888, 907, 930, 934, 935, 971, 1023,
1041, 1115, 1142, 1184, 1184, 1252, 1263, 1269, 1275, 1275,
1275, 1315, 1315, 1315, 1337, 1337, 1344, 1351, 1396, 1435,
1465, 1502, 1502, 1502, 1502, 1569, 1569, 1569, 1569, 1569,
1569, 1569, 1569, 1640, 1645, 1660, 1660, 1697, 1697, 1716,
1746, 1756, 1778, 1901, 1937, 1997, 2000, 2000, 2000, 2007,
2007, 2020, 2070, 2195, 2274, 2294, 2319, 2415, 2417, 2509,
2528, 2578, 2578, 2584, 2590, 2590, 2624, 2636, 2678, 2678,
2678, 2678, 2678, 2776, 2776, 2789, 2862, 2862, 2894, 2894,
2894, 2923, 2923, 3058, 3073, 3073, 3073, 3073, 3137, 3159,
3159, 3159, 3186, 3218, 3218, 3279, 3279, 3281, 3338, 3358,
3360, 3368, 3387, 3609, 3636, 3636, 3713, 3713, 3716, 3716,
3748, 3767, 3769, 3854, 3871, 3912, 3968, 3986, 3994, 3994,
4069]
assert splif['hash'].shape == (172,)
assert_array_equal(splif['ligand_coords'].shape, (172, 7, 3))
assert_array_equal(splif['protein_coords'].shape, (172, 7, 3))
assert_array_equal(reference, splif['hash'])
def test_splif_similarity():
"""SPLIF similarity"""
mols = list(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/dude/xiap/actives_docked.sdf')))
mols = list(filter(lambda x: x.title == '312335', mols))
list(map(lambda x: x.addh(only_polar=True), mols))
receptor = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/dude/xiap/receptor_rdkit.pdb')))
receptor.protein = True
receptor.addh(only_polar=True)
ref = SPLIF(mols[0], receptor)
splif_fps = [SPLIF(mol, receptor) for mol in mols]
outcome = [similarity_SPLIF(ref, fp) for fp in splif_fps]
target_outcome = np.array([1.000, 0.779, 0.660, 0.805, 0.630,
0.802, 0.366, 0.817, 0.378, 0.553,
0.732, 0.705, 0.856, 0.797, 0.502,
0.418, 0.653, 0.436, 0.708, 0.688])
assert_array_almost_equal(outcome, target_outcome, decimal=3)
# check if similarity is symmetric
for fp1, fp2 in combinations(splif_fps, 2):
assert similarity_SPLIF(fp1, fp2) == similarity_SPLIF(fp2, fp1)
def test_plec():
"""PLEC fingerprints"""
mols = list(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/dude/xiap/actives_docked.sdf')))
mols = list(filter(lambda x: x.title == '312335', mols))
list(map(lambda x: x.removeh(), mols))
receptor = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/dude/xiap/receptor_rdkit.pdb')))
receptor.protein = True
receptor.removeh()
plec = PLEC(mols[0], receptor)
reference = [80, 119, 120, 120, 120, 120, 137, 138, 155, 155, 155, 155,
155, 155, 155, 161, 199, 214, 214, 214, 226, 226, 233, 266,
282, 283, 283, 313, 313, 386, 386, 430, 431, 431, 432, 448,
581, 581, 643, 662, 684, 690, 729, 737, 741, 778, 778, 795,
799, 799, 812, 812, 876, 877, 894, 907, 924, 924, 925, 925,
935, 935, 935, 935, 935, 964, 964, 964, 993, 993, 996, 996,
1002, 1002, 1042, 1042, 1066, 1066, 1077, 1113, 1119, 1224,
1266, 1266, 1290, 1322, 1322, 1334, 1334, 1403, 1411, 1411,
1461, 1475, 1480, 1497, 1521, 1584, 1584, 1614, 1618, 1618,
1618, 1618, 1691, 1694, 1694, 1755, 1755, 1755, 1755, 1786,
1835, 1835, 1867, 1953, 1953, 1953, 1953, 1963, 1970, 1970,
1990, 1992, 1992, 1992, 2024, 2024, 2060, 2252, 2373, 2383,
2383, 2390, 2390, 2451, 2537, 2538, 2552, 2555, 2558, 2640,
2720, 2752, 2791, 2821, 2821, 2931, 2950, 2957, 2957, 2959,
2961, 2961, 2961, 2963, 2970, 2970, 2982, 3034, 3049, 3066,
3084, 3084, 3084, 3104, 3126, 3227, 3248, 3293, 3293, 3293,
3420, 3439, 3517, 3539, 3546, 3546, 3546, 3546, 3553, 3559,
3596, 3630, 3643, 3643, 3674, 3707, 3708, 3716, 3738, 3742,
3828, 3846, 3859, 3876, 3887, 3904, 3904, 3904, 3916, 3916,
3939, 3941, 3981, 3981, 3991, 3993, 4010, 4097, 4127, 4127,
4127, 4127, 4165, 4181, 4192, 4316, 4330, 4372, 4391, 4461,
4462, 4463, 4542, 4542, 4542, 4549, 4549, 4549, 4549, 4614,
4615, 4657, 4668, 4670, 4686, 4686, 4686, 4688, 4688, 4688,
4688, 4695, 4729, 4740, 4741, 4744, 4744, 4744, 4744, 4756,
4814, 4828, 4828, 4861, 4861, 4861, 4861, 4861, 4861, 4861,
4861, 4861, 4861, 4861, 4861, 4861, 4861, 4861, 4861, 4916,
4945, 4945, 5011, 5037, 5042, 5044, 5046, 5055, 5078, 5080,
5101, 5101, 5126, 5139, 5146, 5189, 5193, 5232, 5271, 5314,
5321, 5350, 5379, 5439, 5439, 5439, 5439, 5481, 5482, 5535,
5563, 5565, 5565, 5585, 5601, 5601, 5626, 5626, 5631, 5631,
5631, 5631, 5631, 5631, 5639, 5670, 5688, 5690, 5742, 5804,
5804, 5864, 5871, 5885, 5983, 5992, 6010, 6010, 6010, 6059,
6059, 6096, 6164, 6183, 6183, 6197, 6234, 6256, 6261, 6261,
6277, 6277, 6277, 6277, 6299, 6333, 6333, 6388, 6388, 6404,
6428, 6428, 6428, 6428, 6431, 6431, 6445, 6449, 6450, 6480,
6496, 6519, 6519, 6540, 6582, 6642, 6654, 6654, 6671, 6717,
6722, 6735, 6735, 6735, 6764, 6764, 6781, 6781, 6781, 6781,
6788, 6788, 6803, 6808, 6833, 6838, 6838, 6950, 6979, 6979,
6997, 7069, 7115, 7194, 7250, 7254, 7277, 7288, 7352, 7464,
7493, 7506, 7506, 7520, 7530, 7530, 7530, 7542, 7546, 7561,
7608, 7678, 7678, 7685, 7701, 7701, 7701, 7752, 7752, 7752,
7790, 7847, 7957, 7957, 7957, 7959, 8003, 8003, 8003, 8010,
8083, 8086, 8086, 8086, 8086, 8113, 8116, 8160, 8190, 8230,
8230, 8262, 8262, 8282, 8284, 8284, 8292, 8297, 8327, 8327,
8383, 8383, 8383, 8418, 8418, 8426, 8457, 8484, 8484, 8543,
8543, 8580, 8629, 8651, 8655, 8697, 8726, 8781, 8784, 8796,
8837, 8850, 8923, 9034, 9040, 9077, 9077, 9099, 9134, 9180,
9206, 9257, 9281, 9304, 9304, 9333, 9341, 9358, 9393, 9394,
9432, 9450, 9450, 9455, 9455, 9481, 9493, 9493, 9505, 9537,
9547, 9572, 9585, 9610, 9610, 9661, 9689, 9690, 9690, 9700,
9700, 9733, 9736, 9736, 9736, 9736, 9765, 9784, 9885, 9885,
9885, 9934, 9938, 9968, 9968, 10037, 10080, 10080, 10103,
10113, 10113, 10114, 10115, 10115, 10115, 10139, 10139, 10139,
10139, 10139, 10181, 10181, 10181, 10181, 10185, 10286, 10295,
10317, 10317, 10340, 10340, 10340, 10340, 10352, 10353, 10364,
10364, 10385, 10490, 10490, 10504, 10535, 10539, 10539, 10589,
10589, 10591, 10599, 10648, 10648, 10650, 10650, 10681, 10703,
10714, 10714, 10714, 10739, 10739, 10793, 10806, 10806, 10806,
10837, 10865, 10865, 10871, 10903, 10978, 10978, 11056, 11056,
11141, 11159, 11207, 11213, 11257, 11272, 11360, 11362, 11377,
11454, 11454, 11458, 11458, 11458, 11539, 11563, 11580, 11580,
11580, 11605, 11605, 11610, 11610, 11613, 11624, 11664, 11664,
11683, 11683, 11697, 11698, 11701, 11707, 11753, 11835, 11846,
11852, 11858, 11876, 11879, 11890, 11957, 11957, 12009, 12115,
12130, 12151, 12222, 12268, 12290, 12290, 12295, 12295, 12320,
12431, 12448, 12475, 12475, 12475, 12481, 12485, 12487, 12587,
12632, 12632, 12634, 12641, 12641, 12641, 12664, 12761, 12761,
12778, 12832, 12878, 12878, 12884, 12958, 12982, 12982, 12982,
12982, 12992, 13057, 13079, 13121, 13129, 13200, 13200, 13277,
13277, 13317, 13317, 13320, 13320, 13336, 13388, 13434, 13443,
13475, 13495, 13517, 13517, 13553, 13602, 13637, 13655, 13658,
13658, 13688, 13688, 13774, 13774, 13784, 13784, 13784, 13786,
13791, 13791, 13809, 13839, 13839, 13839, 13839, 13839, 13876,
13905, 13906, 13906, 13906, 13906, 13920, 13920, 13920, 13920,
13920, 13949, 13949, 14058, 14122, 14122, 14133, 14133, 14198,
14259, 14259, 14317, 14332, 14368, 14386, 14423, 14423, 14423,
14423, 14423, 14423, 14423, 14439, 14440, 14447, 14464, 14464,
14469, 14505, 14510, 14510, 14513, 14516, 14516, 14529, 14529,
14529, 14549, 14563, 14563, 14570, 14570, 14570, 14582, 14605,
14605, 14611, 14748, 14748, 14750, 14757, 14772, 14798, 14802,
14810, 14854, 14857, 14857, 14878, 14878, 14903, 14903, 14993,
14993, 14996, 15008, 15012, 15018, 15044, 15044, 15074, 15092,
15092, 15146, 15146, 15191, 15251, 15251, 15253, 15258, 15311,
15311, 15317, 15429, 15429, 15441, 15444, 15498, 15518, 15520,
15622, 15622, 15622, 15651, 15672, 15712, 15715, 15798, 15798,
15811, 15950, 15982, 15982, 15987, 16023, 16023, 16042, 16049,
16054, 16080, 16099, 16119, 16119, 16119, 16174, 16174, 16213,
16225, 16229, 16234, 16234, 16234, 16252, 16252, 16252, 16252,
16252, 16320, 16328, 16362, 16362]
assert_array_equal(reference, plec)
assert_array_equal(plec.shape, (860,))
# Hydrogens should not impact the PLEC fingerprint
list(map(lambda x: x.addh(only_polar=True), mols))
receptor.addh(only_polar=True)
plec = PLEC(mols[0], receptor)
assert_array_equal(reference, plec, "Polar Hs break PLEC")
list(map(lambda x: x.addh(), mols))
receptor.addh()
plec = PLEC(mols[0], receptor)
assert_array_equal(reference, plec, "Non-polar Hs break PLEC")
def test_plec_binded_hoh():
# if water coordinates metal in PDB and ligand is in contact with it, HOH
# will pop up in metals environment, thus we cannot ignore HOHs in repr_dict
if (oddt.toolkit.backend == 'ob' or
(oddt.toolkit.backend == 'rdk' and
oddt.toolkit.__version__ >= '2017.03')):
ligand = next(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data', 'pdb', '3kwa_ligand.sdf')))
protein = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data', 'pdb', '3kwa_5Apocket.pdb')))
protein.protein = True
assert len(PLEC(ligand, protein, ignore_hoh=True)) == 465
assert len(PLEC(ligand, protein, ignore_hoh=False)) == 560
def test_plec_similarity():
"""PLEC similarity"""
mols = list(oddt.toolkit.readfile('sdf', os.path.join(
test_data_dir, 'data/dude/xiap/actives_docked.sdf')))
mols = list(filter(lambda x: x.title == '312335', mols))
list(map(lambda x: x.addh(only_polar=True), mols))
receptor = next(oddt.toolkit.readfile('pdb', os.path.join(
test_data_dir, 'data/dude/xiap/receptor_rdkit.pdb')))
receptor.protein = True
receptor.addh(only_polar=True)
reference_sparse = PLEC(mols[0], receptor)
outcome_sparse = [dice(reference_sparse, PLEC(mol, receptor),
sparse=True) for mol in mols[1:]]
target_outcome = np.array([0.833, 0.729, 0.849, 0.785, 0.821,
0.604, 0.868, 0.656, 0.712, 0.652,
0.699, 0.785, 0.736, 0.745, 0.661,
0.667, 0.555, 0.616, 0.714])
reference_dense = PLEC(mols[0], receptor, sparse=False)
outcome_dense = [dice(reference_dense, PLEC(mol, receptor, sparse=False),
sparse=False) for mol in mols[1:]]
assert_array_almost_equal(outcome_sparse, target_outcome, decimal=2)
assert_array_almost_equal(outcome_dense, target_outcome, decimal=2)
def test_molecular_shingles():
sildenafil = oddt.toolkit.readstring("smi", "CCCc1nn(C)c2c(=O)[nH]c(-c3cc(S(=O)(=O)N4CCN(C)CC4)ccc3OCC)nc12")
if oddt.toolkit.backend == 'ob':
target_shingles = [
'CCC', 'CCCc', 'CCCc(c)n', 'CCN(C)CC', 'CCN(CC)S(=O)(=O)c', 'CCO', 'CCOc', 'CCOc(c)c', 'CCc1nncc1n', 'CN(C)C',
'CN(C)S(=O)(=O)c(c)c', 'CN(S)CCN', 'CN(S)CCN', 'COc(cc)c(c)c', 'Cc1ccn(n1)C', 'Cn(c)n', 'Cn1ncc(c1c(=O)[nH])n',
'Cn1nccc1c', 'NCCN(C)C', 'NCCN(C)C', 'cS(=O)(=O)N', 'cS(=O)(=O)N', 'c[nH]c(=O)c(c)n', 'cc(=O)[nH]',
'cc([nH])nc(c)c', 'cc(c)cc(S)c', 'cc(n)[nH]c(=O)c', 'ccc(c(O)c)c(n)[nH]', 'ccc(cc)S(=O)(=O)N', 'cccc(O)c',
'cccc(S)c', 'cnc([nH]c)c(c)c', 'cnc1c(C)nnc1c']
else:
target_shingles = [
'CCC', 'CCN(C)CC', 'CCO', 'CCc1nncc1n', 'CN(C)C', 'CN(C)CCN', 'CN(C)CCN', 'CN(S)CCN', 'CN(S)CCN', 'Cc1ccn(C)n1',
'Cn1ncc(n)c1c([nH])=O', 'c-c([nH])nc(c)c', 'c-c(c)c(cc)OC', 'c-c(c)cc(c)S', 'c-c(n)[nH]c(c)=O', 'cCCC', 'cOCC',
'cS(=O)(=O)N(CC)CC', 'cS(N)(=O)=O', 'cS(N)(=O)=O', 'c[nH]c(=O)c(c)n', 'cc([nH])=O', 'cc(c)OCC',
'cc(c)S(=O)(=O)N(C)C', 'cc(n)CCC', 'cc1ccnn1C', 'ccc(-c(n)[nH])c(c)O', 'ccc(cc)S(N)(=O)=O', 'cccc(c)O',
'cccc(c)S', 'cn(C)n', 'cnc([nH]c)-c(c)c', 'cnc1c(C)nnc1c']
for n in range(10):
sildenafil = shuffle_mol(sildenafil)
shingles = sorted(get_molecular_shingles(sildenafil))
assert_array_equal(shingles, target_shingles)