--- a +++ b/bert_mixup/early_mixup/model.py @@ -0,0 +1,31 @@ +from torch import nn + +class MolNet(nn.Module): + """ + This class is created to specify the Neural Network on which vectorized datasets we have created previously + is trained on, validated and later tested. + It consist of one input layer, one output layer and multiple hidden layers. + ... + """ + def __init__(self, input_dim, output_dim, dropout=0.5): + super(MolNet, self).__init__() + # Layer definitions + self.layers = nn.Sequential( + nn.Linear(input_dim, 1024), + nn.ReLU(), + nn.Dropout(dropout), + nn.Linear(1024, 512), + nn.ReLU(), + nn.Dropout(dropout), + nn.Linear(512, 256), + nn.ReLU(), + nn.Dropout(dropout), + nn.Linear(256, 128), + nn.ReLU(), + nn.Dropout(dropout), + nn.Linear(128, output_dim) + ) + + def forward(self, x): + # Forward pass + return self.layers(x) \ No newline at end of file