[fceaa9]: / train_logging.py

Download this file

236 lines (194 with data), 9.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import torch
from torch.utils import data
import numpy as np
from sklearn.metrics import r2_score, classification_report, roc_auc_score, average_precision_score
import datetime
OUTPUT_DIR = 'output/'
TENSORBOARDX_OUTPUT_DIR = 'tbxoutput/'
SAVEDMODELS_DIR = 'savedmodels/'
# time of importing this file, including microseconds because slurm may start queued jobs very close in time
DATETIME_STR = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
class Globals: # container for all objects getting passed between log calls
evaluate_called = False
g = Globals()
TRAIN_SUBSET_SIZE = 500
SUBSET_LOADER_BATCH_SIZE = 50
def subset_loader(dataloader, subset_size, seed=0):
np.random.seed(seed)
random_indices = np.random.choice(len(dataloader.dataset), subset_size)
np.random.seed() # "reset" seed
subset = data.Subset(dataloader.dataset, random_indices)
return data.DataLoader(subset, batch_size=SUBSET_LOADER_BATCH_SIZE, collate_fn=dataloader.collate_fn)
def compute_roc_auc(output, target):
def roc_auc_of_column(scores_column, targets_column):
relevant_indices = targets_column.nonzero()
relevant_targets = targets_column[relevant_indices]
relevant_scores = scores_column[relevant_indices]
relevant_targets_np = relevant_targets.cpu().numpy()
relevant_targets_np = relevant_targets_np == 1 # -1s/1s => Falses/Trues
try:
score = roc_auc_score(relevant_targets_np, relevant_scores.cpu().detach().numpy())
except:
score = np.nan
return score
scores = torch.sigmoid(output)
roc_aucs = [
roc_auc_of_column(scores[:, i], target[:, i])
for i in range(target.shape[1])
]
return roc_aucs
def compute_pr_auc(output, target):
def pr_auc_of_column(scores_column, targets_column):
relevant_indices = targets_column.nonzero()
relevant_targets = targets_column[relevant_indices]
relevant_scores = scores_column[relevant_indices]
relevant_targets_np = relevant_targets.cpu().numpy()
relevant_targets_np = relevant_targets_np == 1 # -1s/1s => Falses/Trues
return average_precision_score(relevant_targets_np, relevant_scores.cpu().detach().numpy())
scores = torch.sigmoid(output)
pr_aucs = [
pr_auc_of_column(scores[:, i], target[:, i])
for i in range(target.shape[1])
]
return pr_aucs
def compute_mse(output, target):
nn_mse = torch.nn.MSELoss()
mses = [
nn_mse(output[:, i], target[:, i]).cpu().detach().numpy()
for i in range(target.shape[1])
]
return mses
def compute_rmse(output, target):
mses = compute_mse(output, target)
return np.sqrt(mses)
SCORE_FUNCTIONS = {
'roc-auc': compute_roc_auc, 'pr-auc': compute_pr_auc, 'MSE': compute_mse, 'RMSE': compute_rmse
}
def feed_net(net, dataloader, criterion, cuda):
batch_outputs = []
batch_losses = []
batch_targets = []
for i_batch, batch in enumerate(dataloader):
if cuda:
batch = [tensor.cuda(non_blocking=True) for tensor in batch]
adjacency, nodes, edges, target = batch
output = net(adjacency, nodes, edges)
loss = criterion(output, target)
batch_outputs.append(output)
batch_losses.append(loss.item())
batch_targets.append(target)
outputs = torch.cat(batch_outputs)
loss = np.mean(batch_losses)
targets = torch.cat(batch_targets)
return outputs, loss, targets
def evaluate_net(net, train_dataloader, validation_dataloader, test_dataloader, criterion, args):
global g
if not g.evaluate_called:
g.evaluate_called = True
if args.score == 'roc-auc' or args.score == 'pr-auc':
g.best_mean_train_score, g.best_mean_validation_score, g.best_mean_test_score = 0, 0, 0
elif args.score == 'MSE' or args.score == 'RMSE':
# just something large, this is arbitrary
g.best_mean_train_score, g.best_mean_validation_score, g.best_mean_test_score = 10, 10, 10
#g.train_subset_loader = subset_loader(train_dataloader, TRAIN_SUBSET_SIZE, seed=0)
g.train_subset_loader = train_dataloader
train_output, train_loss, train_target = feed_net(net, g.train_subset_loader, criterion, args.cuda)
validation_output, validation_loss, validation_target = feed_net(net, validation_dataloader, criterion, args.cuda)
test_output, test_loss, test_target = feed_net(net, test_dataloader, criterion, args.cuda)
train_scores = SCORE_FUNCTIONS[args.score](train_output, train_target)
train_mean_score = np.nanmean(train_scores)
validation_scores = SCORE_FUNCTIONS[args.score](validation_output, validation_target)
validation_mean_score = np.nanmean(validation_scores)
test_scores = SCORE_FUNCTIONS[args.score](test_output, test_target)
test_mean_score = np.nanmean(test_scores)
if args.score == 'roc-auc' or args.score == 'pr-auc':
new_best_model_found = validation_mean_score > g.best_mean_validation_score
elif args.score == 'MSE' or args.score == 'RMSE':
new_best_model_found = validation_mean_score < g.best_mean_validation_score
if new_best_model_found:
g.best_mean_train_score = train_mean_score
g.best_mean_validation_score = validation_mean_score
g.best_mean_test_score = test_mean_score
if args.savemodel:
path = SAVEDMODELS_DIR + type(net).__name__ + DATETIME_STR
torch.save(net, path)
target_names = train_dataloader.dataset.target_names
return { # if made deeper, tensorboardx writing breaks I think
'loss': {'train': train_loss, 'test': test_loss},
'mean {}'.format(args.score):
{'train': train_mean_score, 'validation': validation_mean_score, 'test': test_mean_score},
'train {}s'.format(args.score): {target_names[i]: train_scores[i] for i in range(len(target_names))},
'test {}s'.format(args.score): {target_names[i]: test_scores[i] for i in range(len(target_names))},
'best mean {}'.format(args.score):
{'train': g.best_mean_train_score, 'validation': g.best_mean_validation_score, 'test': g.best_mean_test_score}
}
def get_run_info(net, args):
return {
'net': type(net).__name__,
'args': ', '.join([str(k) + ': ' + str(v) for k, v in vars(args).items()]),
'modules': {name: str(module) for name, module in net._modules.items()}
}
def less_log(net, train_dataloader, validation_dataloader, test_dataloader, criterion, epoch, args):
scalars = evaluate_net(net, train_dataloader, validation_dataloader, test_dataloader, criterion, args)
mean_score_key = 'mean {}'.format(args.score)
print('epoch {}, training mean {}: {}, validation mean {}: {}, testing mean {}: {}'.format(
epoch + 1,
args.score, scalars[mean_score_key]['train'],
args.score, scalars[mean_score_key]['validation'],
args.score, scalars[mean_score_key]['test'])
)
def more_log(net, train_dataloader, validation_dataloader, test_dataloader, criterion, epoch, args):
mean_score_key = 'mean {}'.format(args.score)
best_mean_score_key = 'best {}'.format(mean_score_key)
global g
if not g.evaluate_called:
run_info = get_run_info(net, args)
print('net: ' + run_info['net'])
print('args: {' + run_info['args'] + '}')
print('****** MODULES: ******')
for name, description in run_info['modules'].items():
print(name + ': ' + description)
print('**********************')
print('score metric: {}'.format(args.score))
print('columns:')
print(
'epochs, ' + \
'mean training score, mean validation score, mean testing score, ' + \
'best-model-so-far mean training score, best-model-so-far mean validation score, best-model-so-far mean testing score'
)
scalars = evaluate_net(net, train_dataloader, validation_dataloader, test_dataloader, criterion, args)
print(
'%d, %f, %f, %f, %f, %f, %f' % (
epoch + 1,
scalars[mean_score_key]['train'], scalars[mean_score_key]['validation'], scalars[mean_score_key]['test'],
scalars[best_mean_score_key]['train'], scalars[best_mean_score_key]['validation'], scalars[best_mean_score_key]['test']
)
)
# to open tensorboard training summaries, live or static:
# 1) do some training to generate them in tbxoutput/
# 2) install tensorflow (in a separate environment is fine)
# 3) run tensorboard --port 6011 --logdir tbxoutput/ and open localhost:6011 in a browser
def tensorboardx_log(net, train_dataloader, validation_dataloader, test_dataloader, criterion, epoch, args):
global g
if not g.evaluate_called:
from tensorboardX import SummaryWriter
run_info = get_run_info(net, args)
class_str = run_info['net']
output_subdir = TENSORBOARDX_OUTPUT_DIR + class_str + ' ' + DATETIME_STR
g.writer = SummaryWriter(output_subdir)
g.writer.add_text('args', run_info['args'])
for k, v in run_info['modules'].items():
g.writer.add_text(k, v)
else:
#writer = SummaryWriter(output_subdir) # tensorboardx bug causes this to crash on epoch 40 or so
g.writer.file_writer.reopen() # workaround
scalars = evaluate_net(net, train_dataloader, validation_dataloader, test_dataloader, criterion, args)
for k, v in scalars.items():
g.writer.add_scalars(k, v, epoch)
#writer.close() # tensorboardx bug causes this to crash on epoch 40 or so
g.writer.file_writer.close() # workaround
print('epoch %d, training loss: %f, validation loss: %f' %
(epoch + 1, scalars['loss']['train'], scalars['loss']['validation']))
LOG_FUNCTIONS = {
'less': less_log, 'more': more_log, 'tensorboardx': tensorboardx_log
}