[fceaa9]: / train.py

Download this file

188 lines (163 with data), 9.4 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch
from torch import optim
from torch.utils.data import DataLoader
import gnn.summation_mpnn_implementations
import gnn.aggregation_mpnn_implementations
import gnn.emn_implementations
from losses import LOSS_FUNCTIONS
from train_logging import LOG_FUNCTIONS
from gnn.molgraph_data import MolGraphDataset, molgraph_collate_fn
import argparse
MODEL_CONSTRUCTOR_DICTS = {
'ENNS2V': {
'constructor': gnn.summation_mpnn_implementations.ENNS2V,
'hyperparameters': {
'message-passes': {'type': int, 'default': 5},
'message-size': {'type': int, 'default': 50},
'enn-depth': {'type': int, 'default': 3},
'enn-hidden-dim': {'type': int, 'default': 100},
'enn-dropout-p': {'type': float, 'default': 0.0},
's2v-lstm-computations': {'type': int, 'default': 7},
's2v-memory-size': {'type': int, 'default': 50},
'out-depth': {'type': int, 'default': 2},
'out-hidden-dim': {'type': int, 'default': 300},
'out-dropout-p': {'type': float, 'default': 0.0}
}
},
'GGNN': {
'constructor': gnn.summation_mpnn_implementations.GGNN,
'hyperparameters': { # the below, batch size 50, learn rate 1.176e-5 and 1200 epochs is good for ESOL
'message-passes': {'type': int, 'default': 1},
'message-size': {'type': int, 'default': 25},
'msg-depth': {'type': int, 'default': 2},
'msg-hidden-dim': {'type': int, 'default': 50},
'msg-dropout-p': {'type': float, 'default': 0.0},
'gather-width': {'type': int, 'default': 45},
'gather-att-depth': {'type': int, 'default': 2},
'gather-att-hidden-dim': {'type': int, 'default': 26},
'gather-att-dropout-p': {'type': float, 'default': 0.0},
'gather-emb-depth': {'type': int, 'default': 2},
'gather-emb-hidden-dim': {'type': int, 'default': 26},
'gather-emb-dropout-p': {'type': float, 'default': 0.0},
'out-depth': {'type': int, 'default': 2},
'out-hidden-dim': {'type': int, 'default': 450},
'out-dropout-p': {'type': float, 'default': 0.00463},
'out-layer-shrinkage': {'type': float, 'default': 0.5028}
}
},
'AttentionGGNN': { # the below, batch size 50, learn rate 1.560e-5 and 600 epochs is good for BBBP
'constructor': gnn.aggregation_mpnn_implementations.AttentionGGNN,
'hyperparameters': {
'message-passes': {'type': int, 'default': 8},
'message-size': {'type': int, 'default': 25},
'msg-depth': {'type': int, 'default': 2},
'msg-hidden-dim': {'type': int, 'default': 50},
'msg-dropout-p': {'type': float, 'default': 0.0},
'att-depth': {'type': int, 'default': 2},
'att-hidden-dim': {'type': int, 'default': 50},
'att-dropout-p': {'type': float, 'default': 0.0},
'gather-width': {'type': int, 'default': 45},
'gather-att-depth': {'type': int, 'default': 2},
'gather-att-hidden-dim': {'type': int, 'default': 45},
'gather-att-dropout-p': {'type': float, 'default': 0.0},
'gather-emb-depth': {'type': int, 'default': 2},
'gather-emb-hidden-dim': {'type': int, 'default': 26},
'gather-emb-dropout-p': {'type': float, 'default': 0.0},
'out-depth': {'type': int, 'default': 2},
'out-hidden-dim': {'type': int, 'default': 560},
'out-dropout-p': {'type': float, 'default': 0.1},
'out-layer-shrinkage': {'type': float, 'default': 0.6}
}
},
'EMN': { # the below, batch size 50, learn rate 1e-4 and 1000 epochs is good for SIDER
'constructor': gnn.emn_implementations.EMNImplementation,
'hyperparameters': {
'message-passes': {'type': int, 'default': 8},
'edge-embedding-size': {'type': int, 'default': 50},
'edge-emb-depth': {'type': int, 'default': 2},
'edge-emb-hidden-dim': {'type': int, 'default': 105},
'edge-emb-dropout-p': {'type': float, 'default': 0.0},
'att-depth': {'type': int, 'default': 2},
'att-hidden-dim': {'type': int, 'default': 85},
'att-dropout-p': {'type': float, 'default': 0.0},
'msg-depth': {'type': int, 'default': 2},
'msg-hidden-dim': {'type': int, 'default': 150},
'msg-dropout-p': {'type': float, 'default': 0.0},
'gather-width': {'type': int, 'default': 45},
'gather-att-depth': {'type': int, 'default': 2},
'gather-att-hidden-dim': {'type': int, 'default': 45},
'gather-att-dropout-p': {'type': float, 'default': 0.0},
'gather-emb-depth': {'type': int, 'default': 2},
'gather-emb-hidden-dim': {'type': int, 'default': 45},
'gather-emb-dropout-p': {'type': float, 'default': 0.0},
'out-depth': {'type': int, 'default': 2},
'out-hidden-dim': {'type': int, 'default': 450},
'out-dropout-p': {'type': float, 'default': 0.1},
'out-layer-shrinkage': {'type': float, 'default': 0.6}
}
}
}
common_args_parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=False)
common_args_parser.add_argument('--cuda', action='store_true', default=False, help='Enables CUDA training')
common_args_parser.add_argument('--train-set', type=str, default='toydata/piece-of-tox21-train.csv.gz', help='Training dataset path')
common_args_parser.add_argument('--valid-set', type=str, default='toydata/piece-of-tox21-valid.csv.gz', help='Validation dataset path')
common_args_parser.add_argument('--test-set', type=str, default='toydata/piece-of-tox21-test.csv.gz', help='Testing dataset path')
common_args_parser.add_argument('--loss', type=str, default='MaskedMultiTaskCrossEntropy', choices=[k for k, v in LOSS_FUNCTIONS.items()])
common_args_parser.add_argument('--score', type=str, default='roc-auc', help='roc-auc or MSE')
common_args_parser.add_argument('--epochs', type=int, default=500, help='Number of training epochs')
common_args_parser.add_argument('--batch-size', type=int, default=50, help='Number of graphs in a mini-batch')
common_args_parser.add_argument('--learn-rate', type=float, default=1e-5)
common_args_parser.add_argument('--savemodel', action='store_true', default=False, help='Saves model with highest validation score')
common_args_parser.add_argument('--logging', type=str, default='less', choices=[k for k, v in LOG_FUNCTIONS.items()])
main_parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
subparsers = main_parser.add_subparsers(help=', '.join([k for k, v in MODEL_CONSTRUCTOR_DICTS.items()]), dest='model')
subparsers.required = True
model_parsers = {}
for model_name, constructor_dict in MODEL_CONSTRUCTOR_DICTS.items():
subparser = subparsers.add_parser(model_name, parents=[common_args_parser])
for hp_name, hp_kwargs in constructor_dict['hyperparameters'].items():
subparser.add_argument('--' + hp_name, **hp_kwargs, help=model_name + ' hyperparameter')
model_parsers[model_name] = subparser
def main():
global args
args = main_parser.parse_args()
args_dict = vars(args)
# dictionary of hyperparameters that are specific to the chosen model
model_hp_kwargs = {
name.replace('-', '_'): args_dict[name.replace('-', '_')] # argparse converts to "_" implicitly
for name, v in MODEL_CONSTRUCTOR_DICTS[args.model]['hyperparameters'].items()
}
train_dataset = MolGraphDataset(args.train_set)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, collate_fn=molgraph_collate_fn)
validation_dataset = MolGraphDataset(args.valid_set)
validation_dataloader = DataLoader(validation_dataset, batch_size=args.batch_size, collate_fn=molgraph_collate_fn)
test_dataset = MolGraphDataset(args.test_set)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, collate_fn=molgraph_collate_fn)
((sample_adjacency, sample_nodes, sample_edges), sample_target) = train_dataset[0]
net = MODEL_CONSTRUCTOR_DICTS[args.model]['constructor'](
node_features=len(sample_nodes[0]), edge_features=len(sample_edges[0, 0]), out_features=len(sample_target),
**model_hp_kwargs
)
if args.cuda:
net = net.cuda()
optimizer = optim.Adam(net.parameters(), lr=args.learn_rate)
criterion = LOSS_FUNCTIONS[args.loss]
for epoch in range(args.epochs):
net.train()
for i_batch, batch in enumerate(train_dataloader):
if args.cuda:
batch = [tensor.cuda() for tensor in batch]
adjacency, nodes, edges, target = batch
optimizer.zero_grad()
output = net(adjacency, nodes, edges)
loss = criterion(output, target)
loss.backward()
torch.nn.utils.clip_grad_value_(net.parameters(), 5.0)
optimizer.step()
with torch.no_grad():
net.eval()
LOG_FUNCTIONS[args.logging](
net, train_dataloader, validation_dataloader, test_dataloader, criterion, epoch, args
)
if __name__ == '__main__':
main()