[a621b4]: / drug_generator.py

Download this file

353 lines (295 with data), 14.8 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# -*- coding: utf-8 -*-
"""
Created on Mon May 1 19:41:07 2023
@author: Sen
"""
import os
import sys
import subprocess
import hashlib
import warnings
import platform
import csv
import numpy as np
from tqdm import tqdm
import argparse
import torch
from transformers import AutoTokenizer, GPT2LMHeadModel
import shutil
from openbabel import openbabel
import logging
import time
import subprocess
import threading
import os
import signal
import psutil
import os
class Command(object):
def __init__(self, cmd):
self.cmd = cmd
self.process = None
def run(self, timeout):
def target():
try:
if os.name == 'posix': # Unix/Linux/Mac
self.process = subprocess.Popen(self.cmd, shell=True, stderr=subprocess.DEVNULL,preexec_fn=os.setsid)
else: # Windows
self.process = subprocess.Popen(self.cmd, shell=True, stderr=subprocess.DEVNULL)
self.process.communicate()
except Exception:
pass
thread = threading.Thread(target=target)
thread.start()
thread.join(timeout)
if thread.is_alive():
if os.name == 'posix': # Unix/Linux/Mac
os.killpg(os.getpgid(self.process.pid), signal.SIGTERM)
else: # Windows
parent = psutil.Process(self.process.pid)
for child in parent.children(recursive=True):
child.kill()
parent.kill()
thread.join()
return self.process.returncode if self.process else None
class LigandPostprocessor:
def __init__(self, path):
self.hash_ligand_mapping = {}
self.output_path = path # Output directory for SDF files
self.load_mapping()
def load_mapping(self):
mapping_file = os.path.join(output_path, 'hash_ligand_mapping.csv')
if os.path.exists(mapping_file):
print("Found existed mapping file, now reading ...")
with open(mapping_file, 'r') as f:
reader = csv.reader(f)
for row in reader:
self.hash_ligand_mapping[row[0]] = row[1]
# Define a function to save the hash-ligand mapping to a file
def save_mapping(self):
mapping_file = os.path.join(output_path, 'hash_ligand_mapping.csv')
with open(mapping_file, 'w', newline='') as f:
writer = csv.writer(f)
for ligand_hash, ligand in self.hash_ligand_mapping.items():
writer.writerow([ligand_hash, ligand])
# Define a function to filter out empty SDF files
def filter_sdf(self, hash_ligand_mapping_per_batch):
print("Filtering sdf ...")
ligand_hash_list = list(hash_ligand_mapping_per_batch.keys())
mapping_per_match = hash_ligand_mapping_per_batch.copy()
for ligand_hash in tqdm(ligand_hash_list):
filepath = os.path.join(self.output_path, ligand_hash + '.sdf')
if os.path.getsize(filepath) < 2*1024: #2kb
try:
os.remove(filepath)
#mapping_per_match.pop(ligand_hash)
except Exception:
print(filepath)
mapping_per_match.pop(ligand_hash)
return mapping_per_match
# Define a function to generate SDF files from a list of ligand SMILES using OpenBabel
def to_sdf(self, ligand_list_per_batch):
print("Converting to sdf ...")
hash_ligand_mapping_per_batch = {}
for ligand in tqdm(ligand_list_per_batch):
obConversion = openbabel.OBConversion()
obConversion.SetInAndOutFormats("smi", "smi")
mol = openbabel.OBMol()
if not obConversion.ReadString(mol, ligand):
continue # Skip invalid SMILES
num_atoms = sum(1 for atom in openbabel.OBMolAtomIter(mol) if atom.GetAtomicNum() != 1)
if min_atoms is not None and num_atoms < min_atoms:
continue # Skip molecules with too few non-hydrogen atoms
if max_atoms is not None and num_atoms > max_atoms:
continue # Skip molecules with too many non-hydrogen atoms
ligand_hash = hashlib.sha1(ligand.encode()).hexdigest()
if ligand_hash not in self.hash_ligand_mapping.keys():
filepath = os.path.join(self.output_path , ligand_hash + '.sdf')
if platform.system() == "Windows":
cmd = "obabel -:" + ligand + " -osdf -O " + filepath + " --gen3d --forcefield mmff94"
elif platform.system() == "Linux":
obabel_path = shutil.which('obabel')
cmd = f"{obabel_path} -:'{ligand}' -osdf -O '{filepath}' --gen3d --forcefield mmff94"
else:pass
try:
command = Command(cmd)
return_code = command.run(timeout=10)
if return_code != 0: # Check the return value
#print(f"Command execution failed with return code: {return_code}")
continue # Skip the current iteration if the command execution failed
except Exception:
time.sleep(1)
continue
if os.path.exists(filepath):
hash_ligand_mapping_per_batch[ligand_hash] = ligand # Add the hash-ligand mapping to the dictionary
self.hash_ligand_mapping.update(self.filter_sdf(hash_ligand_mapping_per_batch))
def delete_empty_files(self):
# 遍历指定目录及其子目录中的所有文件
for foldername, subfolders, filenames in os.walk(self.output_path):
for filename in filenames:
file_path = os.path.join(foldername, filename)
# 如果文件大小为0,则删除该文件
if os.path.getsize(file_path) < 2*1024: #2kb
try:
os.remove(file_path)
print(f'Deleted {file_path}')
except Exception:
pass
def check_sdf(self):
file_list = os.listdir(self.output_path)
sdf_file_list = [x for x in file_list if x[-4:]=='sdf']
for filename in sdf_file_list:
hash_ = filename[:-4]
if hash_ not in self.hash_ligand_mapping.keys():
filepath = os.path.join(self.output_path,filename)
try:
os.remove(filepath)
print('remove ' + filepath)
except Exception:
pass
else:pass
def about():
print("""
_____ _____ _____ _______
| __ \ / ____| __ \__ __|
| | | |_ __ _ _ __ _| | __| |__) | | |
| | | | '__| | | |/ _` | | |_ | ___/ | |
| |__| | | | |_| | (_| | |__| | | | |
|_____/|_| \__,_|\__, |\_____|_| |_|
__/ |
|___/
A generative drug design model based on GPT2
""")
# Function to read in FASTA file
def read_fasta_file(file_path):
with open(file_path, 'r') as f:
sequence = []
for line in f:
line = line.strip()
if not line.startswith('>'):
sequence.append(line)
protein_sequence = ''.join(sequence)
return protein_sequence
if __name__ == "__main__":
about()
warnings.filterwarnings('ignore')
if platform.system() == "Linux":
os.environ["TOKENIZERS_PARALLELISM"] = "false"
#Sometimes, using Hugging Face may require a proxy.
#os.environ["http_proxy"] = "http://your.proxy.server:port"
#os.environ["https_proxy"] = "http://your.proxy.server:port"
# Set up command line argument parsing
parser = argparse.ArgumentParser()
parser.add_argument('-p','--pro_seq', type=str, default=None, help='Input a protein amino acid sequence. Default value is None. Only one of -p and -f should be specified.')
parser.add_argument('-f','--fasta', type=str, default=None, help='Input a FASTA file. Default value is None. Only one of -p and -f should be specified.')
parser.add_argument('-l','--ligand_prompt', type=str, default='', help='Input a ligand prompt. Default value is an empty string.')
parser.add_argument('-e','--empty_input', action='store_true', default=False, help='Enable directly generate mode.')
parser.add_argument('-n','--number',type=int, default=100, help='At least how many molecules will be generated. Default value is 100.')
parser.add_argument('-d','--device',type=str, default='cuda', help="Hardware device to use. Default value is 'cuda'.")
parser.add_argument('-o','--output', type=str, default='./ligand_output/', help="Output directory for generated molecules. Default value is './ligand_output/'.")
parser.add_argument('-b','--batch_size', type=int, default=16, help="How many molecules will be generated per batch. Try to reduce this value if you have low RAM. Default value is 16.")
parser.add_argument('-t','--temperature', type=float, default=1.0, help="Adjusts the randomness of text generation; higher values produce more diverse outputs. Default value is 1.0.")
parser.add_argument('--top_k', type=int, default=9, help='The number of highest probability tokens to consider for top-k sampling. Defaults to 9.')
parser.add_argument('--top_p', type=float, default=0.9, help='The cumulative probability threshold (0.0 - 1.0) for top-p (nucleus) sampling. It defines the minimum subset of tokens to consider for random sampling. Defaults to 0.9.')
parser.add_argument('--min_atoms', type=int, default=None, help='Minimum number of non-H atoms allowed for generation.')
parser.add_argument('--max_atoms', type=int, default=35, help='Maximum number of non-H atoms allowed for generation. Default value is 35.')
parser.add_argument('--no_limit', action='store_true', default=False, help='Disable the default max atoms limit.')
args = parser.parse_args()
protein_seq = args.pro_seq
fasta_file = args.fasta
ligand_prompt = args.ligand_prompt
directly_gen = args.empty_input
num_generated = args.number
device = args.device
output_path = args.output
batch_generated_size = args.batch_size
temperature_value = args.temperature
top_k = args.top_k
top_p = args.top_p
min_atoms = args.min_atoms
max_atoms = args.max_atoms
if args.no_limit:
max_atoms = None
if (args.min_atoms is not None) and (args.max_atoms is not None) and (args.min_atoms > args.max_atoms):
raise ValueError("Error: min_atoms cannot be greater than max_atoms.")
if args.ligand_prompt:
args.max_atoms = None
args.min_atoms = None
print("Note: --ligand_prompt is specified. --max_atoms and --min_atoms settings will be ignored.")
logging.basicConfig(level=logging.CRITICAL)
openbabel.obErrorLog.StopLogging()
os.makedirs(output_path, exist_ok=True)
# Check if the input is either a protein amino acid sequence or a FASTA file, but not both
if directly_gen:
print("Now in directly generate mode.")
prompt = "<|startoftext|><P>"
print(prompt)
else:
if (not protein_seq) and (not fasta_file):
print("Error: Input is empty.")
sys.exit(1)
if protein_seq and fasta_file:
print("Error: The input should be either a protein amino acid sequence or a FASTA file, but not both.")
sys.exit(1)
if fasta_file:
protein_seq = read_fasta_file(fasta_file)
# Generate a prompt for the model
p_prompt = "<|startoftext|><P>" + protein_seq + "<L>"
l_prompt = "" + ligand_prompt
prompt = p_prompt + l_prompt
print(prompt)
# Load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained('liyuesen/druggpt')
model = GPT2LMHeadModel.from_pretrained("liyuesen/druggpt")
model.eval()
device = torch.device(device)
model.to(device)
# Create a LigandPostprocessor object
ligand_post_processor = LigandPostprocessor(output_path)
# Generate molecules
generated = torch.tensor(tokenizer.encode(prompt)).unsqueeze(0)
generated = generated.to(device)
batch_number = 0
directly_gen_protein_list = []
directly_gen_ligand_list = []
attention_mask = generated.ne(tokenizer.pad_token_id).float()
while len(ligand_post_processor.hash_ligand_mapping) < num_generated:
generate_ligand_list = []
batch_number += 1
print(f"=====Batch {batch_number}=====")
print("Generating ligand SMILES ...")
sample_outputs = model.generate(
generated,
do_sample=True,
top_k=top_k,
max_length=1024,
top_p=top_p,
temperature=temperature_value,
num_return_sequences=batch_generated_size,
attention_mask=attention_mask,
pad_token_id = tokenizer.eos_token_id
)
for sample_output in sample_outputs:
generate_ligand = tokenizer.decode(sample_output, skip_special_tokens=True).split('<L>')[1]
generate_ligand_list.append(generate_ligand)
if directly_gen:
directly_gen_protein_list.append(tokenizer.decode(sample_output, skip_special_tokens=True).split('<L>')[0])
directly_gen_ligand_list.append(generate_ligand)
torch.cuda.empty_cache()
ligand_post_processor.to_sdf(generate_ligand_list)
ligand_post_processor.delete_empty_files()
ligand_post_processor.check_sdf()
if directly_gen:
arr = np.array([directly_gen_protein_list, directly_gen_ligand_list])
processed_ligand_list = ligand_post_processor.hash_ligand_mapping.values()
with open(os.path.join(output_path, 'generate_directly.csv'), 'w', newline='') as f:
writer = csv.writer(f)
for index in range(arr.shape[1]):
protein, ligand = arr[0, index], arr[1, index]
if ligand in processed_ligand_list:
writer.writerow([protein, ligand])
print("Saving mapping file ...")
ligand_post_processor.save_mapping()
print(f"{len(ligand_post_processor.hash_ligand_mapping)} molecules successfully generated!")
print("Ligand Energy Minimization")
result = subprocess.run(['python', 'druggpt_min_multi.py', '-d', output_path])