Download this file

469 lines (397 with data), 19.9 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-Apache2
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import glob
from enum import Enum, auto
from typing import Any, Dict, Iterable, List, Optional, Tuple, Union, get_args
import lightning as L
import webdataset as wds
from bionemo.webdatamodule.utils import pickles_to_tars
class Split(Enum):
"""Names for each data split."""
train = auto()
val = auto()
test = auto()
class WebDataModule(L.LightningDataModule):
"""A LightningDataModule for using webdataset tar files.
`WebDataModule` is a `LightningDataModule` for using webdataset tar files to setup PyTorch
datasets and dataloaders. This data module takes as input a dictionary: Split -> tar file
directory and vaiours webdataset config settings. In its setup() function, it creates the
webdataset object chaining up the input `pipeline_wds` workflow. In its train/val/test_dataloader(),
it creates the WebLoader object chaining up the `pipeline_prebatch_wld` workflow.
Examples:
--------
1. create the data module with input directory to webdataset tar files.
Depending on which of the downstream Lightning.Trainer methods are called,
e.g., `Trainer.fit()`, `Trainer.validate()`, `Trainer.test()` or
`Trainer.predict()`, only a subset of the train, val and test splits need to
be specified in the various input options to the data module:
- `Trainer.fit()` requires the `train` and `val` splits
- `Trainer.validate()` requires the `val` split
- `Trainer.test()` requires the `test` splits
- `Trainer.predict()` requires the `test` splits
Here is an example of constructing the data module for `Trainer.fit()`:
```python
>>> from bionemo.webdatamodule.datamodule import Split, WebDataModule
>>>
>>> tar_file_prefix = "shards"
>>>
>>> dirs_of_tar_files = {
>>> Split.train: "/path/to/train/split/tars",
>>> Split.val: "/path/to/val/split/tars",
>>> }
>>>
>>> n_samples {
>>> Split.train: 1000,
>>> Split.val: 100,
>>> }
>>>
>>> # this is the string to retrieve the corresponding data object from the
>>> # webdataset file (see
>>> # https://github.com/webdataset/webdataset?tab=readme-ov-file#the-webdataset-format
>>> # for details)
>>> suffix_keys_wds = "tensor.pyd"
>>>
>>> seed = 27193781
>>>
>>> # Specify the routines to process the samples in the WebDataset object.
>>> # The routine is a generator of an Iterable of generators that are chained
>>> # together by nested function calling. The following is equivalent of
>>> # defining a overall generator of `shuffle(untuple(...))` which
>>> # untuples the samples and shuffles them. See webdataset's Documentation
>>> # for details.
>>> # NOTE: the `untuple` is almost always necessary due to the webdataset's
>>> # file parsing rule.
>>>
>>> untuple = lambda source : (sample for (sample,) in source)
>>>
>>> from webdatast import shuffle
>>> pipeline_wds = {
>>> Split.train : [untuple, shuffle(n_samples[Split.train],
>>> rng=random.Random(seed_rng_shfl))],
>>> Split.val: untuple
>>> }
>>>
>>> # Similarly the user can optionally define the processing routine on the
>>> # WebLoader (the dataloader of webdataset).
>>> # NOTE: these routines by default take unbatched sample as input so the
>>> # user can customize their batching routines here
>>>
>>> batch = batched(local_batch_size, collation_fn=lambda
list_samples : torch.vstack(list_samples))
>>> pipeline_prebatch_wld = {
Split.train: [shuffle(n_samples[Split.train],
rng=random.Random(seed_rng_shfl)), batch],
Split.val : batch,
Split.test : batch
}
>>>
>>> # the user can optionally specify the kwargs for WebDataset and
>>> # WebLoader
>>>
>>> kwargs_wds = {
>>> split : {'shardshuffle' : split == Split.train,
>>> 'nodesplitter' : wds.split_by_node,
>>> 'seed' : seed_rng_shfl}
>>> for split in Split
>>> }
>>>
>>> kwargs_wld = {
>>> split : {"num_workers": 2} for split in Split
>>> }
>>>
>>> invoke_wds = {
>>> split: [("with_epoch", {"nbatches" : 5})] for split in Split
>>> }
>>>
>>> invoke_wld = {
>>> split: [("with_epoch", {"nbatches" : 5}] for split in Split
>>> }
>>>
>>> # construct the data module
>>> data_module = WebDataModule(suffix_keys_wds,
dirs_of_tar_files,
prefix_tars_wds=tar_file_prefix,
pipeline_wds=pipeline_wds,
pipeline_prebatch_wld=pipeline_prebatch_wld,
kwargs_wds=kwargs_wds,
kwargs_wld=kwargs_wld,
invoke_wds=invoke_wds,
invoke_wld=invoke_wld,
)
```
"""
def __init__(
self,
suffix_keys_wds: Union[str, Iterable[str]],
dirs_tars_wds: Dict[Split, str],
prefix_tars_wds: str = "wdshards",
pipeline_wds: Optional[Dict[Split, Union[Iterable[Iterable[Any]], Iterable[Any]]]] = None,
pipeline_prebatch_wld: Optional[Dict[Split, Union[Iterable[Iterable[Any]], Iterable[Any]]]] = None,
kwargs_wds: Optional[Dict[Split, Dict[str, Any]]] = None,
kwargs_wld: Optional[Dict[Split, Dict[str, Any]]] = None,
invoke_wds: Optional[Dict[Split, List[Tuple[str, Dict[str, Any]]]]] = None,
invoke_wld: Optional[Dict[Split, List[Tuple[str, Dict[str, Any]]]]] = None,
):
"""Constructor.
Args:
suffix_keys_wds: a set of keys each
corresponding to a data object in the webdataset tar file
dictionary. The data objects of these keys will be extracted and
tupled for each sample in the tar files
dirs_tars_wds: input dictionary: Split -> tar file
directory that contains the webdataset tar files for each split
Kwargs:
prefix_tars_wds: name prefix of the input webdataset tar
files. The input tar files are globbed by
"{dirs_tars_wds[split]}/{prefix_tars_wds}-*.tar"
pipeline_wds: a dictionary of webdatast composable, i.e.,
functor that maps a iterator to another iterator that
transforms the data sample yield from the dataset object, for
different splits, or an iterable to such a sequence of such
iterators. For example, this can be used to transform the
sample in the worker before sending it to the main process of
the dataloader
pipeline_prebatch_wld: a dictionary
of webloader composable, i.e., functor that maps a iterator to
another iterator that transforms the data sample yield from the
WebLoader object, for different splits, or an iterable to a
seuqnence of such iterators. For example, this can be used for
batching the samples. NOTE: this is applied before batching is
yield from the WebLoader
kwargs_wds: kwargs for the WebDataset.__init__()
kwargs_wld : kwargs for the WebLoader.__init__(), e.g., num_workers, of each split
invoke_wds: a dictionary of WebDataset methods to be called upon WebDataset
construction. These methods must return the WebDataset object itself. Examples
are .with_length() and .with_epoch(). These methods will be applied towards
the end of returning the WebDataset object, i.e., after the pipline_wds
have been applied. The inner list of tuples each has its first element as the
method name and the second element as the corresponding method's kwargs.
invoke_wld: a dictionary of WebLoader methods to be called upon WebLoader
construction. These methods must return the WebLoader object itself. Examples
are .with_length() and .with_epoch(). These methods will be applied towards
the end of returning the WebLoader object, i.e., after the pipelin_prebatch_wld
have been applied. The inner list of tuples each has its first element as the
method name and the second element as the corresponding method's kwargs.
"""
super().__init__()
self._dirs_tars_wds = dirs_tars_wds
if not isinstance(suffix_keys_wds, get_args(Union[str, Iterable])):
raise TypeError("suffix_keys_wds can only be str or Iterable[str]")
self._suffix_keys_wds = suffix_keys_wds
self._prefix_tars_wds = prefix_tars_wds
self._pipeline_wds = pipeline_wds
self._pipeline_prebatch_wld = pipeline_prebatch_wld
self._kwargs_wld = kwargs_wld
self._kwargs_wds = kwargs_wds
self._invoke_wds = invoke_wds
self._invoke_wld = invoke_wld
# to be created later in setup
self._dataset = {}
def prepare_data(self) -> None:
"""This is called only by the main process by the Lightning workflow.
Do not rely on this data module object's state update here as there is no
way to communicate the state update to other subprocesses. Is a **no-op**.
"""
pass
def _setup_wds(self, split: Split) -> wds.WebDataset:
"""Setup webdataset and webloader. This is called by setup().
Args:
split (Split): train, val or test split
Returns:
WebDataset
"""
if split not in self._dirs_tars_wds.keys():
raise RuntimeError(f"_setup_wds() is called with {split} split that doesn't have the input tar dir")
urls = sorted(glob.glob(f"{self._dirs_tars_wds[split]}/{self._prefix_tars_wds}-*.tar"))
kwargs = self._kwargs_wds[split] if self._kwargs_wds is not None else None
dataset = wds.WebDataset(urls, **(kwargs if kwargs is not None else {})).decode()
if isinstance(self._suffix_keys_wds, str):
dataset = dataset.extract_keys(f"*.{self._suffix_keys_wds}")
else:
dataset = dataset.extract_keys(*[f"*.{key}" for key in self._suffix_keys_wds])
if self._pipeline_wds is not None and self._pipeline_wds[split] is not None:
if isinstance(self._pipeline_wds[split], Iterable):
dataset = dataset.compose(*self._pipeline_wds[split])
else:
dataset = dataset.compose(self._pipeline_wds[split])
if self._invoke_wds is not None and self._invoke_wds[split] is not None:
for method in self._invoke_wds[split]:
name_method, kwargs_method = method
dataset = getattr(dataset, name_method)(**kwargs_method)
return dataset
def setup(self, stage: str) -> None:
"""This is called on all Lightning-managed nodes in a multi-node training session.
Args:
stage: "fit", "test" or "predict"
"""
if stage == "fit":
self._dataset[Split.train] = self._setup_wds(Split.train)
self._dataset[Split.val] = self._setup_wds(Split.val)
elif stage == "validate":
self._dataset[Split.val] = self._setup_wds(Split.val)
elif stage == "test":
self._dataset[Split.test] = self._setup_wds(Split.test)
elif stage == "predict":
self._dataset[Split.test] = self._setup_wds(Split.test)
else:
raise NotImplementedError(f"Data setup with {stage=} is not implemented.")
def _setup_dataloader(self, split: Split) -> wds.WebLoader:
"""Setup the dataloader for the input dataset split.
Args:
split (Split): input split type
Returns:
WebLoader object
Raises:
ValueError if `split` doesn't correspond to a known dataset.
"""
if self._dataset[split] is None:
raise ValueError(
f"_setup_dataloader() is called with {split} split without setting up the corresponding dataset."
)
dataset = self._dataset[split]
kwargs = self._kwargs_wld[split] if self._kwargs_wld is not None else None
loader = wds.WebLoader(dataset, **(kwargs if kwargs is not None else {}))
if self._pipeline_prebatch_wld is not None and self._pipeline_prebatch_wld[split] is not None:
if isinstance(self._pipeline_prebatch_wld[split], Iterable):
loader = loader.compose(*self._pipeline_prebatch_wld[split])
else:
loader = loader.compose(self._pipeline_prebatch_wld[split])
if self._invoke_wld is not None and self._invoke_wld[split] is not None:
for method in self._invoke_wld[split]:
name_method, kwargs_method = method
loader = getattr(loader, name_method)(**kwargs_method)
return loader
def train_dataloader(self) -> wds.WebLoader:
"""Webdataset for the training data."""
return self._setup_dataloader(Split.train)
def val_dataloader(self) -> wds.WebLoader:
"""Webdataset for the validation data."""
return self._setup_dataloader(Split.val)
def test_dataloader(self) -> wds.WebLoader:
"""Webdataset for the test data."""
return self._setup_dataloader(Split.test)
def predict_dataloader(self) -> wds.WebLoader:
"""Alias for :func:`test_dataloader`."""
return self._setup_dataloader(Split.test)
class PickledDataWDS(WebDataModule):
"""A LightningDataModule to process pickled data into webdataset tar files.
`PickledDataWDS` is a LightningDataModule to process pickled data into webdataset tar files
and setup dataset and dataloader. This inherits the webdataset setup from its parent module
`WebDataModule`. This data module takes a directory of pickled data files, data filename
prefixes for train/val/test splits, data filename suffixes and prepare webdataset tar files
by globbing the specific pickle data files `{dir_pickles}/{name_subset[split]}.{suffix_pickles}`
and outputing to webdataset tar file with the dict structure:
```
{"__key__" : name.replace(".", "-"),
suffix_pickles : pickled.dumps(data) }
```
NOTE: this assumes only one pickled file is processed for each sample. In
its setup() function, it creates the webdataset object chaining up the input
`pipeline_wds` workflow. In its train/val/test_dataloader(), it creates the
WebLoader object chaining up the `pipeline_prebatch_wld` workflow.
Examples:
--------
1. create the data module with a directory of pickle files and the file name
prefix thereof for different splits to used by `Lightning.Trainer.fit()`
```python
>>> from bionemo.core.data.datamodule import Split, PickledDataWDS
>>> dir_pickles = "/path/to/my/pickles/dir"
>>> # the following will use `sample1.mydata.pt` and `sample2.mydata.pt` as the
>>> # training dataset and `sample4.mydata.pt` and `sample5.mydata.pt` as the
>>> # validation dataset
>>> suffix_pickles = "mydata.pt"
>>> names_subset = {
>>> Split.train: [sample1, sample2],
>>> Split.val: [sample4, sample5],
>>> }
>>> # the following setting will attempt to create at least 5 tar files in
>>> # `/path/to/output/tars/dir/myshards-00000{0-5}.tar`
>>> n_tars_wds = 5
>>> prefix_tars_wds = "myshards"
>>> output_dir_tar_files = {
Split.train : "/path/to/output/tars/dir-train",
Split.val : "/path/to/output/tars/dir-val",
Split.test : "/path/to/output/tars/dir-test",
}
>>> # user can optionally customize the data processing routines and kwargs used
>>> # in the WebDataset and WebLoader (see the examples in `WebDataModule`)
>>> pipeline_wds = { Split.train: ... }
>>> pipeline_prebatch_wld = { Split.train: ... }
>>> kwargs_wds = { Split.train: ..., Split.val: ... }
>>> kwargs_wld = { Split.train: ..., Split.val: ... }
>>> invoke_wds = { Split.train: ..., Split.val: ... }
>>> invoke_wld = { Split.train: ..., Split.val: ... }
>>> # create the data module
>>> data_module = PickledDataWDS(
>>> dir_pickles,
>>> names_subset,
>>> suffix_pickles, # `WebDataModule` args
>>> output_dir_tar_files, # `WebDataModule` args
>>> n_tars_wds=n_tars_wds,
>>> prefix_tars_wds=prefix_tars_wds, # `WebDataModule` kwargs
>>> pipeline_wds=pipeline_wds, # `WebDataModule` kwargs
>>> pipeline_prebatch_wld=pipelines_wdl_batch, # `WebDataModule` kwargs
>>> kwargs_wds=kwargs_wds, # `WebDataModule` kwargs
>>> kwargs_wld=kwargs_wld, # `WebDataModule` kwargs
>>> invoke_wds=invoke_wds, # `WebDataModule` kwargs
>>> invoke_wld=invoke_wld, # `WebDataModule` kwargs
>>> )
```
"""
def __init__(
self,
dir_pickles: str,
names_subset: Dict[Split, List[str]],
*args,
n_tars_wds: Optional[int] = None,
**kwargs,
) -> None:
"""Constructor.
Args:
dir_pickles: input directory of pickled data files
names_subset: list of filename prefix of
the data samples to be loaded in the dataset and dataloader for
each of the split
*args: arguments passed to the parent WebDataModule
n_tars_wds: attempt to create at least this number of
webdataset shards
**kwargs: arguments passed to the parent WebDataModule
"""
super().__init__(
*args,
**kwargs,
)
self._dir_pickles = dir_pickles
self._names_subset = names_subset
self._n_tars_wds = n_tars_wds
def prepare_data(self) -> None:
"""This is called only by the main process by the Lightning workflow.
Do not rely on this data module object's state update here as there is no
way to communicate the state update to other subprocesses. The nesting
`pickles_to_tars` function goes through the data name prefixes in the
different splits, read the corresponding pickled file and output a
webdataset tar archive with the dict structure: {"__key__" :
name.replace(".", "-"), suffix_pickles : pickled.dumps(data) }.
"""
for split in self._names_subset.keys():
# create wds shards (tar files) for train set
pickles_to_tars(
self._dir_pickles,
self._names_subset[split],
self._suffix_keys_wds,
self._dirs_tars_wds[split],
self._prefix_tars_wds,
min_num_shards=self._n_tars_wds,
)